

Confidential Document

PRISSMA Project

Plateforme de Recherche et d’Investissement pour la Sûreté

 et la Sécurité de la Mobilité Autonome

 04/2021 - 04/2024

[L5.5] RELIABILITY OF AUTONOMOUS VEHICLE SYSTEMS

IMPLEMENTATIONS

[L5.5] RAPPORT SUR LA FIABILITE DE L’ECOSYSTEME VEHICULAIRE

AUTONOME SECURISE.

Main authors: B. Bannour (CEA) and S. Haddad (OPPIDA)

Abstract. This deliverable is associated with Task 5.5, which addresses reliability concerns in

connected autonomous vehicular ecosystems through protocol verification methodologies.

CEA presents a tooled Verification and Validation (V&V) methodology based on Interaction

Models (IM), resembling UML sequence diagrams or Message Sequence charts. These models

capture communication flows in distributed systems and protocols. The methodology integrates

IMs with Runtime Verification (RV) techniques to evaluate protocol implementations' adher-

ence to specifications during testing or operation. We showcase the methodology's application

through the analysis of V2V/V2I/V2X secured communication using ETSI TS 103 900 Coop-

erative Awareness Messages (CAM).

Résumé. Ce livrable est associé à la tâche 5.5, qui aborde les problèmes de fiabilité dans les

écosystèmes véhiculaires autonomes connectés grâce à des méthodologies de vérification de

protocoles. CEA présente une méthodologie outillée de vérification et de validation (V&V)

basée sur des modèles d'interaction (IM), ressemblant à des diagrammes de séquence UML ou

à des MSC (Message Sequence charts). Ces modèles capturent les flux de communication dans

les systèmes distribués et les protocoles. La méthodologie intègre les IM avec des techniques

de vérification à l’exécution (RV) pour évaluer la conformité des implémentations de protocoles

aux spécifications lors des tests ou de l'exploitation. Nous illustrons l'application de la métho-

dologie à travers l'analyse de la communication sécurisée V2V/V2I/V2X basé sur des messages

CAM (Cooperative Awareness Messages) tels que standardisés par l’ETSI TS 103 900.

[L5.5] Reliability of Autonomous Vehicle Systems Implementations

Confidential Document

[L5.5] Reliability of Autonomous Vehicle Systems Implementations

Confidential Document

1 INTRODUCTION

This deliverable provides an overview of the activities conducted in Task 5.5. The primary

goal of this task is to explore the reliability issues of autonomous vehicular ecosystems through

the description of methodology(ies) for verifying protocols (verification of the properties of

these protocols) associated with connectivity in autonomous vehicular ecosystems.

CEA has developed a tooled Verification and Validation (V&V) methodology based on In-

teraction Models (IM) akin to UML sequence diagrams or Message Sequence Charts. These

models are specifically tailored to represent communication flows, particularly within distrib-

uted systems and communication protocols. The methodology combines interaction models and

Runtime Verification (RV) techniques that can be used to analyze communication protocols

implementations adherence to their specification at testing stages or at the operation phase.

We showcase the methodology applied to the analysis of V2V/V2I/V2X secured communi-

cation based on ETSI’s Cooperative Awareness Messages (CAM) defined in ETSI TS 103 900

which aim to achieve information sharing between nearby vehicles and infrastructure to im-

prove road safety while ensuring message authenticity and integrity.

As identified in PRISSMA deliverable 5.2 and 5.3, AI based autonomous systems are large

and complex systems that rely on the correct and secured exchange of information between its

different components to provide a global safe and efficient road transport service to its users.

For the different AI based components of the system to perform correctly, they need to trust the

different communication means with the different sources from which they gather information

to perform correctly. For that not only security requirements have to be made on those commu-

nications (cf. PRISSMA deliverable 5.3 section 3.2), but also implementation and designed

have to be evaluated. The tool presented in section 3 and 4 as well as the case study evaluations

presented in section 4, demonstrate how higher level of assurance can be reached thanks to

these advanced V&V technics.

[L5.5] Reliability of Autonomous Vehicle Systems Implementations

Confidential Document

2 BEHAVIORAL SPECIFICATION USING INTERACTION MODELS

Interactions such as UML Sequence Diagrams and Message Sequence Charts are broadly

adopted models for describing behaviors of communication protocols and distributed systems.

They focus on specifying message exchanges between subsystems with rich choice and sched-

uling operators, and they are associated with an intuitive graphical depiction.

The behavior of the system can be further formalized using various behavioral languages

(automata, behavior trees, process algebras etc). In the following, we use interaction models to

describe the intended behaviors of the communication protocols and distributed systems.

Interactions are models whose most well-known instances are UML Sequence Diagrams

(UML-SD) [1] or Message Sequence Charts (MSC) [2]. Interactions specify the communication

flow between entities constituting a system. They are particularly adapted to specify distributed

system behaviors, as distributed systems are, by nature, composed of subsystems interacting

via message transmissions. They are associated with graphical representations. This kind of

representation fits in with several intuitions commonly shared by software engineers: time

flows from top to bottom along lifelines, message passing is represented by horizontal arrows,

scheduling operators are visualized by annotated boxes.

Figure 1 Interaction example

In Figure 1, we present the graphical representation of an interaction, generically denoted by

i. Functionalities offered by interaction-based V&V tool are based on our works [3] [4] in which

we define semantics of interactions without the need for translations to other formalisms. The

interaction-based V&V tool computes part of this semantics, based on the key notion of follow-

up interaction.

Figure 2 illustrates the four possible follow-up interactions that can be reached by perform-

ing a single execution step of the interaction i. An execution step consists in executing one

action at a time, and is written as 𝑖
𝑎
→ 𝑖′where i’ is the follow-up interaction upon the action a.

[L5.5] Reliability of Autonomous Vehicle Systems Implementations

Confidential Document

In a nutshell, i' specifies possible continuations, according to i, after the occurrence of the action

a. Such steps can then be displayed as graphical execution tree by the interaction-based V&V

tool as shown in Figure 2.

Being grounded by this small-step semantics, the interaction-based V&V tool is, to the best

of our knowledge, the first tool to offer interaction animation without going through translation

mechanisms to intermediate formalisms like automata, petri-nets or others.

Figure 2 Follow-ups of the interaction from Figure 1

2.1 Interaction language

The first basic elements of an interaction model are the lifelines and the messages exchanged

between them. Let us consider a set L of lifelines: a subsystem of the Distributed System (DS)

is then described by a subset of the lifelines, possibly reduced to one. Let us then consider a set

M of all the messages that can transit through the DS.

Atomic actions are of the form l!m (resp. l?m) corresponding to the emission (resp. reception)

of the message m in M from (resp. by) the lifeline l in L.

Traces are sequences of actions where 𝜀 represents the empty sequence and are concatenated

using the “.” operator. Semantics of interactions are given in terms of traces.

As described in [3], interaction models correspond to expressions built over the empty inter-

action, denoted by Ø, with the empty trace as the only accepted trace and actions (of the form

[L5.5] Reliability of Autonomous Vehicle Systems Implementations

Confidential Document

l!m or l?m) with a trace reduced to a single action as the only accepted trace. We then use

operators to compose interactions into more complex expressions. The strict, seq, par and

newly introduced coreg constructs are binary operators which schedule the execution of actions

w.r.t. one another. Let us consider two interactions i1 and i2. strict stands for strict sequencing

and a behavior of strict(i1,i2) is such that a behavior from i1 must be entirely expressed before

any action from i2 can occur. par stands for parallel or interleaved behaviors so that actions

occurring in i1 and i2 can occur in any order in behaviors expressed by par(i1,i2). seq stands for

weak sequencing and is in essence the key operator for interactions. With seq, interleaving is

only possible between actions that occur on different lifelines, i.e. the behaviors of seq(i1,i2) are

defined as with the strict operator for actions occurring on the same lifeline (whatever it may

be) and as with the par operator for actions occurring on different lifelines.

A behavior of alt(i1,i2) is either a behaviour of i1 or i2 according to a non-deterministic and

exclusive choice between the two alternatives.

The coreg construct behaves as par on certain specific lifelines and as seq on the others. It

is used as coreg(L')(i1,i2)$ with L' a subset of L, the set of lifelines on which the co-region

behaves as par.

The unary operators loopS, loopW, and loopP characterize repetitions (0, 1 or more times)

of behaviors according to a certain scheduling policy which is resp. strict, seq and par. Interac-

tions are both described as a textual expression in the input syntax of the interaction-based V&V

tool and visualised by drawings that wide use of UML-SD and MSC has made familiar to many

software engineers (see Figure 1).

2.2 Execution tree

Each interaction i characterises a set 𝜎(𝑖) of accepted traces, i.e. finite sequences of actions

defined on lifelines occurrring in i. This set of accepted traces can be defined in an operational-

style using either inductive rules (in the style of Plotkin) or through the definition of an execu-

tion function, denoted by 𝜒 as in [4].

Figure 3 Pruning when executing l3!m4

From an initial interaction i, we may execute an action a which is immediately executable.

Which actions this concerns can be determined statically via a frontier function front. front(i)

gives the set of immediately executable actions as the set of positions where these actions ap-

pear in the expression denoting i. Via their recursive definition, interactions have a tree-like

structure, as illustrated on Figure 3. Those trees are binary-trees and we can pinpoint unambig-

uously each sub-tree via its position as a word p in {1,2}*. More precisely, 1 (resp. 2) allows to

access to the left direct subinteraction or the unique direct interaction (resp. the right direct

subinteraction). For any interaction i, pos(i) designates the set of its positions, and, for any p in

pos(i), i|p designates the sub-interaction at position p. For example, for the interaction i =

[L5.5] Reliability of Autonomous Vehicle Systems Implementations

Confidential Document

seq(alt(l1!m1,l2?m2),l1!m3), i|1 is the interaction alt(l1!m1,l2?m2), i|12 is the interaction l2?m2 and
{ε, 1,2,11,12} is the set of positions of i. Thus, front(i) is a subset of pos(i) contains the positions

of all actions that can start a trace in 𝜎(𝑖). The execution of an action a = i|p with p in front(i)

yields a follow-up interaction i' (obtained with 𝜒(𝑖, 𝑝) accordingly to notations of [4]) which

set of accepted traces, i.e. 𝜎(𝜒(𝑖, 𝑝)), exactly contains the traces of that of the original interac-

tion i that start with the specific action at position p in the interaction i.

Finally, we have

𝜎(𝑖) = {
{𝜖} ∪ ⋃𝑝∈𝑓𝑟𝑜𝑛𝑡(𝑖) 𝑖|𝑝. 𝜎(𝜒(𝑖, 𝑝)) if 𝜖 is accepted by 𝑖

⋃𝑝∈𝑓𝑟𝑜𝑛𝑡(𝑖) 𝑖|𝑝. 𝜎(𝜒(𝑖, 𝑝)) otherwise

Deciding whether or not an interaction i accepts the empty trace is done via static analysis using

an inductive reasoning on the expression denoting i. In short, only the empty interaction Ø or

the repetition operators (when the content of the loop is repeated 0 times) can imply the ac-

ceptance of the empty trace.

From the definition of the 𝜒 function, it is easy to deduce a relation in the style of those used

by Plotkin to define operational semantics of process algebras. We note 𝑖
𝑎
→𝑖′ if there exists a

position p in front(i) verifying 𝜒(𝑖, 𝑝) = 𝑖′and i|p = a.

From an initial interaction i0, it is possible to compute all the pairs (i1, a1) verifying 𝑖0
𝑎1
→ 𝑖1. This

process of computing follow-up interactions can be repeated recursively so that we obtain a tree

which root is i0 and represents its set of accepted traces. Traces expressed by i0 can then be

obtained via the concatenation of the actions aj that are successively observed on any path of

the tree starting from i0. Thus, a1…an is an accepted trace of i0 if for all j < n, we have 𝑖𝑗
𝑎𝑗+1
→ 𝑖𝑗+1

and 𝜖 is accepted by in. The interaction of Figure 1 has exactly 4 actions in its frontier. Figure

2 illustrates these 4 actions as well as their follow-up interactions.

2.3 On the execution of actions

The definition of the execution function 𝜒 involves a number of concepts introduced in [4]. In

particular, the mechanism of pruning enters into play for handling weak sequencing. For exam-

ple, let us consider the execution of l3!m4 in Figure 2. If l3!m4 is the first action to occur then,

in order to respect the top to bottom order of the diagram (i.e. weak sequencing), neither l3!m1

nor l3!m3 can occur. Indeed, if those actions were to occur they would have done so before l3!m4.

Hence, both actions must be eliminated from the follow-up interaction and this is possible be-

cause they are within alternatives and loops. This process of pruning is illustrated on Figure 3.

The interaction expression with coreg as root in Figure 3 is simplified with two purposes: elim-

inate all traces with an action on lifeline l3 and preserve all other accepted traces. We do this by

transforming the interaction expression. As the sub-interaction strict(l1!m1,seq(l2?m1,l3?m1))

accepts a unique trace containing the action l3?m1, the first alternative of the alt operator is no

longer allowed and the sub-interaction with alt as top operator is reduced to its second alterna-

tive, here Ø, which by definition accepts only the empty trace and consequently avoids lifeline

[L5.5] Reliability of Autonomous Vehicle Systems Implementations

Confidential Document

l3. As can be seen from Figure 3, the process of pruning an interaction is a local transformation

guided by the lifeline to be avoided.

3 RUNTIME VERIFICATION AGAINST INTERACTION MODELS

3.1 Trace analysis

The interaction-based V&V tool implements algorithms for analysing traces w.r.t. interactions.

These analyses determine whether or not a behavior given as a trace is accepted. More generally,

given an interaction model and a trace, a verdict of conformance can be produced.

The principle of the algorithm is to consider the first element a1 of the trace t to be analysed

(therefore of the form a1.t'), to execute it in the reference interaction i0 and to remove it from

the trace. This allows us to start again with all the interactions i1 verifying 𝑖0
𝑎1
→𝑖1 and the re-

maining trace t'.

If the original trace t of length n can be emptied, then it means that it is accepted by the original

interaction i0 iff 𝜖 is accepted by the last interaction model in. If this is not possible then this

means that the behavior t deviates from i0.

In general, there might be several occurrences of the same action in a given interaction. Hence,

there may be several paths in the analysis graph, as described in [4] (see Figure 4 where l1!m1

occurs twice in the top interaction).

Figure 4 Trace analysis

[L5.5] Reliability of Autonomous Vehicle Systems Implementations

Confidential Document

The analysis process is illustrated on Figure 4 on the trace t = l1!m1.l3?m1. Here, the two man-

ners to interpret the emission of m1 yield two paths in the analysis graph. We provide a variety

of local verdicts to decorate those paths. The Out verdict in the left branch signifies that it is

not possible to interpret t as accepted if the first action l1!m1 is consumed considering the oc-

currence within the alt operator. It is not possible for l3 to receive m1 from the bottom left

interaction. In contrast, if the first action l1!m1 is consumed considering the occurrence below

the alt operator, it becomes possible to consume l3?m1. As the trace is now empty with an in-

teraction that does not accept the empty trace, the TooShort local verdict identifies the trace

under analysis as a strict prefix of an accepted behavior.

Trace analysis consists in exploring all branches of the execution tree, guided by the trace to be

analysed, and annotating all these branches with a local verdict. Once these local verdicts are

computed, it is then possible to produce a global verdict. The global verdict that is produced

from Figure 4 is WeakPass because there exists a manner to execute the interaction that yields

a TooShort local verdict. It would have been a Pass verdict if we had reached an interaction

able to express the empty trace 𝜖, and a Fail verdict if all paths led to Out.

A subclass of interaction models has regular semantics, meaning they can be associated with

finite automata. This subclass uses exclusively strictly sequential loops (loopS). Table 1 depicts

an example of such an interaction and one such finite automaton.

Table 1 Automata inference from interactions

Interaction

Inferred finite automata

Traces can be analyzed against automata generated from interactions. Such automata have the

advantage of decoupling the exploration from the trace analysis, which can accelerate the anal-

ysis for divergent traces from the model as they require exploration of all paths of the explora-

tion tree. Additionally, in case some actions are not observed (partial observability), the

automaton can be used with a hiding mechanism to perform the analysis. The significance of

the verdicts in such cases lies in their ability to infer the conformance of observed traces despite

[L5.5] Reliability of Autonomous Vehicle Systems Implementations

Confidential Document

the partial observability. While the analysis may not provide a complete picture due to the hid-

den actions, it still offers valuable insights into the observed behavior of the system under ex-

amination.

3.2 Multi-trace analysis

Whenever logs are collected, if actions can be ordered globally, whichever is the subsystem on

which they occur, the execution scenario is characterized by a global trace. However, in all

generality, as the subsystems of a DS can be distributed across distant machines, they do not

share a common clock [5] and such a centralization and reordering of logging is not possible.

Still, it may be so that groups of subsystems do share a common clock. We call those groups

co-localizations. It is then possible to collect local traces, each representing a local order of

actions on a co-localization. By gathering those local traces, we can then characterize the exe-

cution scenario as a multi-trace (a structured collection of local traces). In [4], we defined a

multi-trace analysis algorithm for the fully decentralized case.

Multi-traces can be defined as follows. A multi-trace 𝜇 for a partition1 C of the set L of lifelines

is defined as a tuple of traces, each defined over actions occurring on a specific co-localization

c from C. For any such c in C, we denote by 𝜇|𝑐 this local component of 𝜇. We can define a

projection from global traces to multi-traces.

This is illustrated on Figure 5 where, from a given initial trace, we propose two different pro-

jections: on the left, as a multi-trace [4] on the discrete partition of lifelines, and, on the right,

on a certain partition C = { {l1}, { l2 , l3 } }.

Figure 5 Projections onto multi-traces

Works [3] and [4] propose algorithms for verifying global traces and decentralized traces

against interactions. The notion of co-localization generalizes and bridge the gap between those

two algorithms. Indeed global traces are multi-traces on the trivial partition C = {L} and multi-

traces are multi-traces on the discrete partition.

4 CASE STUDY AND OFFLLINE RUNTIME VERIFICATION

1 For a set X, we denote Part(X) the set of its partitions, i.e. the set of collections C of subsets of X verifying

⋃𝑐∈𝐶 𝑐 = 𝑋 and ∀(𝑐, 𝑐′) ∈ 𝐶, 𝑐 ≠ 𝑐′ ⇒ 𝑐 ∩ 𝑐′ = ∅.

[L5.5] Reliability of Autonomous Vehicle Systems Implementations

Confidential Document

4.1 Case study : Handling certificate in vehicular communication

In V2V/V2I/V2X communication, Intelligent Transportation System (ITS) stations (encom-

passing both vehicle and roadside units), engage in the exchange of Cooperative Awareness

Messages (CAM) to share vehicle status information such as position, speed, and direction.

These communications can be the target of malicious attacks to either hampered the traffic or

try to affect autonomous systems behavior and user security using such technics as injection of

false information or the interception of messages to track vehicle locations and infer sensitive

user profiles. For this, V2X messages and more particularly Secure CAMs, incorporate a spe-

cific field called "Secured Packet" housing cryptographic and certificate exchanged mechanism,

also known as an Authorization Ticket (AT).

Within a CAM message, transmitting vehicles append a digital signature and a digital certificate.

Upon reception, receiving vehicles utilize the public key within this digital certificate to vali-

date the authenticity and integrity of the message by verifying the digital signature. Neverthe-

less, this robust security approach can lead to message overload due to its verbosity. Therefore,

ITS stations are equipped with the flexibility to transmit either the complete certificate or a

digest, which encapsulates a portion of the certificate's hash alongside the algorithm identity

used for its computation.

Employing a digest instead of sending the full certificate in vehicular communication presents

several advantages:

• Firstly, it significantly reduces data transmission, thereby enhancing bandwidth effi-

ciency and mitigating communication overhead, particularly in high-traffic scenarios

prone to network congestion.

• Secondly, it reduces validation overhead as a digest of an already encountered certificate.

This means that instead of rechecking the entire certificate, receiving vehicles can use

the digest to quickly find the necessary certificate information from their own database.

Standard bodies ETSI and IEEE have delineated specific certificate mechanisms within CAM

messages, as detailed in [6] and [7] respectively. Our focus lies in modeling and analyzing

CAM communication flows designed to adhere to these established standards, ensuring security

and interoperability within V2X environments, key to the safety and efficiency of AI based

autonomous vehicular solutions.

4.2 Modeling with interactions

In V2X communication, scenarios often concerns the movement of ITS stations, leading to

situations with different combinations of stations entering and leaving communication ranges.

These scenarios highlight the dynamic nature of network connectivity and require adaptable

communication protocols to maintain secure data exchange. The modeling we present here fo-

cuses on situations where an ITS station, such as ITS_S0 (e.g., a car passenger), moves into

the communication range of another station, ITS_S1 (e.g., another car passenger or a roadside

unit), as depicted in Figure 6.

[L5.5] Reliability of Autonomous Vehicle Systems Implementations

Confidential Document

Figure 6 Enter range situation

In Figure 7, we present one possible intended interaction between ITS_S0 and ITS_S1 as fol-

lows. Some other variant behaviors are depicted in Figures 8, Figure 9 and Figure 10. The

interaction depicted in Figure 7 unfolds from top to bottom as follows:

1. Initial certificate exchange:

At start, ITS_S0, operating in isolation, sends a certificate to establish its identity within the

V2X communication environment, signaling its presence and readiness for communication with

other ITS stations.

2. Loop with digest transmission (ITS_S0 to its environment):

While operating in isolation, ITS_S0 continuously sends digests to its environment, preparing

for potential communication with other ITS stations entering within its communication range.

According to following excerpt of [6], the behavior of an ITS station is to periodically send

digests, and every 1s (here abstracted by a number X of sent digests), it sends (full) certificate:

 “ - As default, the choice digest shall be included.

 -The choice certificate shall be included once, one second after the last inclusion of the

choice certificate.”

3. ITS_S1 enters range - Certificate exchange between ITS_S1 to ITS_S0:

As ITS_S1 enters the communication range of ITS_S0, ITS_S1 sends a certificate to ITS_S0,

enabling ITS_S0 to recognize and authenticate ITS_S1. Here, certificate sent by ITS_S1 be-

comes known for ITS_S0.

In response, ITS_S0 sends its certificate (and not digest), following the requirements of [6]

(REQ1):

"If the ITS-S receives a CAM signed by a previously unknown AT, it shall include the complete

certificate immediately in its next CAM, instead of including the digest. In this case, the timer

for the next inclusion of the complete certificate shall be restarted."

[L5.5] Reliability of Autonomous Vehicle Systems Implementations

Confidential Document

In fact, upon receiving a message from ITS_S1, ITS_S0 sends a complete certificate immedi-

ately instead of a digest as the received message is the first communication from ITS_S1 and

thus the station was previously unknown for ITS_S0.

At this point, the certificate sent by ITS_S0 is known by ITS_S1 and the one sent by ITS_S1

becomes known to ITS_S0.

4. Parallel Interaction:

With both ITS_S0 and ITS_S1 aware of each other's full certificates, both stations can resume

default behaviors. This can be modeled with two concurrent loops: a parallel loop with digests

transmission and certificate exchange from ITS_S0 to ITS_S1, and another parallel loop with

the same actions from ITS_S1 to ITS_S0.

It should be noted that the behavior may diverge from these interactions while remaining ac-

ceptable, particularly if ITS_S1 leaves the range of ITS_S0 (or vice versa).

Figures 8 models a variation of the previous interaction: ITS_S0 first sends its certificate upon

ITS_S1 entering its range. This interaction is dual to the one given in Figures 7.

Figures 9 models another possible interaction where ITS_S1 receives a digest upon entering the

range of ITS_S1. In this case, ITS_S1 sends its certificate following REQ1 (unknown certificate

situation). Additionally, ITS_S1 is proactive and requests the unknown full certificate via in-

cluding the request inlineP2psdRequest and this according to following requirement of [6]

(REQ2):

“The component inlineP2pcdRequest shall be included and shall contain the digests of certifi-

cates currently unknown to the ITS-Station in the following cases:

if the ITS-S received a CAM with the component signer of SignedData set to the choice

digest, and this digest points to an unknown authorization ticket; (…)”

Here, we distinguish a message label “certificate_ inlineP2psdRequest” from simple label “cer-

tificate” to abstract a CAM message including besides the full certificate, the request in-

lineP2psdRequest.

In response, ITS_S0 sends its certificate following the requirement of [6] (REQ3):

“If an ITS-S receives a CAM that includes a tbsdata.headerInfo component of type

inlineP2pcdRequest, then the ITS-S shall evaluate the list of certificate digests included in that

component. If the ITS-S finds a certificate digest of the currently used authorization ticket in

that list, it shall include the choice certificate immediately in its next CAM, instead of including

the choice digest.”

Figures 10 models a variation of the previous interaction: ITS_S1 first sends digest upon

ITS_S1 entering its range. This interaction is dual to the one given in Figures 9.

[L5.5] Reliability of Autonomous Vehicle Systems Implementations

Confidential Document

Figure 7 Enter range

scenario 1

Figure 8 Enter range

scenario 2

Figure 9 Enter range

scenario 3

Figure 10 Enter range

scenario 4

4.3 Runtime verification

Figure 11 Offline runtime verification workflow

[L5.5] Reliability of Autonomous Vehicle Systems Implementations

Confidential Document

Figure 11 outlines the RV verification workflow. The Interaction-based V&V tool takes an

interaction model and (multi-)trace as input, computing a verdict on its adherence to the inter-

action. In our case, we perform verification for each interaction model developed for our case

study. If we encounter divergence from all models, then it raises a point of attention: either it

indicates non-conformance to the requirements or suggests that our interaction model base is

incomplete, necessitating enrichment of our modeling.

4.4 Multi-trace analysis

Let us consider the following multi-trace in the input format of the interaction-based V&V tool:

{

[ITS_S0]

 ITS_S0 ! certificate.

 ITS_S0 ! digest.

 ITS_S0 ? certificate.

 ITS_S0 ! certificate.

 ITS_S0 ! digest.

 ITS_S0 ? digest.

 ITS_S0 ? digest.

 ITS_S0 ! digest.

 ITS_S0 ! certificate.

 ITS_S0 ? certificate

 ;

[ITS_S1]

 ITS_S1 ! certificate.

 ITS_S1 ? certificate.

 ITS_S1 ! digest.

 ITS_S1 ? digest.

 ITS_S1 ! digest.

 ITS_S1 ? digest.

 ITS_S1 ? certificate.

 ITS_S1 ! certificate

}

The tool computes adherence to the first interaction of Figure 7.

The following multi-trace diverges from all developed interactions:

{

[ITS_S0]

 ITS_S0 ! certificate.

 ITS_S0 ! digest.

 ITS_S0 ? certificate.

 ITS_S0 ! digest.

 ITS_S0 ! digest.

 ITS_S0 ? digest.

 ITS_S0 ? digest.

 ITS_S0 ! digest.

[L5.5] Reliability of Autonomous Vehicle Systems Implementations

Confidential Document

 ITS_S0 ! certificate.

 ITS_S0 ? certificate

 ;

[ITS_S1]

 ITS_S1 ! certificate.

 ITS_S1 ? digest.

 ITS_S1 ! digest.

 ITS_S1 ? digest.

 ITS_S1 ! digest.

 ITS_S1 ? digest.

 ITS_S1 ? certificate.

 ITS_S1 ! certificate

}

Part of the analysis graph is given in Figure 12. The divergence is due to emission of a digest

by ITS_S0 at some point in the multi-trace (see action highlighted in red) which cannot be

matched against any follow-up action in the interaction of Figure 7. In such situation, ITS_S0

is expected to send full certificate as it received an unknown certificate in previous step, which

does not conform to REQ1.

[L5.5] Reliability of Autonomous Vehicle Systems Implementations

Confidential Document

Figure 12 Analysis graph of a multi-trace analysis against interaction of Figure 7

[L5.5] Reliability of Autonomous Vehicle Systems Implementations

Confidential Document

4.5 Analysis under partial observability

The initial objective of the current deliverable was to evaluate PRISSMA use-cases implemen-

tations. However, the required CAM captures for this validation demonstration that were to be

generated during the other project tests (as in task 5.6), were not produced in the context of

those tests. The tests performed in the other project tasks failed to capture proper secured CAM

exchanged. Because either these features were not implemented by the tested equipment’s or

not managed to be configurable within the project constraints and resources. The captured data

used were provide by partners who generated them during the IRT SystemX project TAM

(https://www.irt-systemx/projets/tam).

The communication captures (CAM) that we had at our disposal correspond to the "Enter range"

situation of real V2V (Vehicle-to-Vehicle) communications. These captures represent actual

data collected during real-world scenarios using the Wireshark tool at the ITS_S0 station level.

Examples of captures from various executions are depicted in Figure 13, Figure 14, and Figure

15. In these figures, the involved stations are car passengers identified by their IDs 1234

(ITS_S0) and 1235 (ITS_S1).

Figure 13 CAM message example 1: Sending certificate

[L5.5] Reliability of Autonomous Vehicle Systems Implementations

Confidential Document

Figure 14 CAM message example 2: Sending digest

Figure 15 CAM message example 3: Receiving certificate

[L5.5] Reliability of Autonomous Vehicle Systems Implementations

Confidential Document

The captures have been collected at the ITS_S0 station level, allowing us to identify mes-

sages emitted by ITS_S0 (Figure 13 and Figure 14) and those received from ITS_S1 (Figure

15).

However, the reception of messages is not recorded at the moment they are considered by

ITS_S0, but rather when they are observed entering the input port of the station. Consequently,

we run the analysis under partial observation concerning the developed interactions by remov-

ing the direct receptions of messages and only considering the emissions using the finite au-

tomata-based trace analysis method. An example automaton used in the trace analysis is

depicted in Table 2. For instance, in the example automaton, the epsilon (𝜖) transitions are used

to represent unobservable actions. Tools like Wireshark allow us to observe message receptions

when they arrive at some port, not when they are actually processed by the ITS stations.

To perform analysis with this information, we need more advanced mechanisms that account

for the fact that some messages are delayed (typically queued) before being processed.

Table 2 Reference automata for analysis under partial observability

Interaction Figure 7

[L5.5] Reliability of Autonomous Vehicle Systems Implementations

Confidential Document

Automata are obtained by projecting onto

ITS_S0 and then hiding receptions by

ITS_S0 (unobserved actions).

The analysis for the recorded traces did not reveal any non-conformance and thus allowed

us to formally validate the implementation of the modules in this operational scenario for the

different requirements defined in section 4.2.

5 CONCLUSION

Deliverable 5.5 provides a tooled V&V methodology leveraging interaction models like UML

Sequence Diagrams and Message Sequence Charts. This interaction formalism is particularly

suitable for distributed systems and communication protocols, which are predominantly in-

volved in connected autonomous vehicular systems. Equipped with semantics, the considered

interaction formalism enables rigorous runtime verification to reason about the operational be-

haviors of the involved subsystems and detect divergences from the interaction models.

We have illustrated this methodology with a case study of V2V/V2I/V2X secured communica-

tion based on ETSI’s Cooperative Awareness Messages (CAM). The framework can be applied

in scenarios of partial observability, where some subsystems or actions are not observed due to

the unavailability of observation points or lack of instrumentation. Integration with widely used

network debugging tools like Wireshark is also enabled, ensuring compatibility with existing

practices and facilitating the troubleshooting and analysis of captured communication flows.

This case study demonstrates that formal validation can be used in the validation of very com-

plex AI based distributed systems where high level of assurance are required and where current

human based validation are very prone to errors. If modeling efforts are still potentially high

the benefits of formal and thus exhaustive demonstration that implementations meet explicitly

defined security requirements is a major contribution to the validation of AI based autonomous

transport systems. Also, it can be noted that due to their technology agnostic modelling process,

[L5.5] Reliability of Autonomous Vehicle Systems Implementations

Confidential Document

the same models can actually be reused by any automotive actor to validate their implementa-

tions offline or in operational environments. Thus, not requiring redefining models for every

evaluation, the developer of the Target Of Evaluation (TOE) only needing to implement plugins

to transform operational or tests data in the proper V&V inputs format and not to possess formal

modelling expertise.

REFERENCES

References

[1] OMG, «Unified Modeling Language,» 2017. [En ligne]. Available: omg.org/spec/UML/.

[2] ITU, «Message Sequence Chart (MSC),» 2011. [En ligne]. Available: itu.int/rec/T-REC-

Z.120.

[3] Erwan Mahe, Christophe Gaston, Pascale Le Gall, «Denotational and operational

semantics for interaction languages: Application to trace analysis,» Sci. Comput.

Program, 2024.

[4] Erwan Mahe, Boutheina Bannour, Christophe Gaston, Arnault Lapitre, Pascale Le Gall,

«A small-step approach to multi-trace checking against interactions,» SAC, 2021.

[5] Lamport, Leslie, «Time, clocks, and the ordering of events in a distributed system,»

Concurrency: the Works of Leslie Lamport, 2019.

[6] (ETSI), European Telecommunication Standard Institute, ETSI TS 103 097 Intelligent

Transport Systems (ITS); Security; Security header and certificate formats;, 2021.

[7] Society, IEEE Vehicular Technology, IEEE Std 1609.2 IEEE Standard for Wireless

Access in Vehicular Environments - Security Services for Applications and Management

Messages, 2016.

