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Abstract. This document describes the final state of the implementation of proofs-of-concept 
(POC) that aim at demonstrating the use of simulation tests during the homologation 
and certification processes of autonomous vehicles. Several POC are currently being devel-
oped within the PRISSMA project and their particular ongoing work is presented separately. 
 
Résumé. Ce document décrit l’état final de la mise en œuvre des preuves de concept 
(POC) qui visent à démontrer l’utilisation des tests de simulation lors des processus d’homol-
ogation et de certification des véhicules autonomes. Plusieurs POC sont actuellement en cours 
de développement dans le cadre du projet PRISSMA et leurs travaux particuliers en cours sont 
présentés 
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Chapter 1: Introduction of the PRISSMA METHOD 
 
In the dynamic landscape of autonomous vehicles, securing certification for embedded artificial intelligence 
(AI) is pivotal. This process not only ensures the safety of these systems but also validates their optimal 
performance and adherence to industry standards. This introduction outlines the comprehensive steps of 
the methodology developed for the homologation of embedded artificial intelligence in autonomous vehi-
cles, with the specific focus on on-track and bench testing. It is an extension of Deliverable 1.5 on the 
PRISSMA project's overall protocol and requirements and will complement Deliverable 2.7 on its simula-
tion counterpart. The methodology aims to ensure a thorough and rigorous evaluation that will be available 
in five distinct proof-of-concept (POC) scenarios, assuring safety, performance, and compliance of auton-
omous systems. In contrast to Deliverable 2.7, the approach taken for this part was to keep a common 
framework without setting a precise methodology in stone. Indeed, as the 5 POCs are drastically different, 
we had to ensure that our approach could include these different procedures. The methodology framework 
is as follows: 
 

1. Evaluation Protocol: 
 
The assessment of each specific function or task follows a structured protocol comprising four essential 
parts. Each of these parts contributes to a comprehensive understanding of the capabilities of the embed-
ded AI, covering aspects such as the description of the function to be evaluated, scenarios or associated 
evaluation databases, requirements, metrics, and evaluation criteria, as well as a detailed description of 
the conducted trials. 
 

2. Presentation of Testing Environments and Means: 
 
This section highlights the testing environments and means implemented for on-track and bench trials. It 
includes detailed descriptions of tracks, testing benches, driving robots, sensors, and other elements cru-
cial to the evaluation process. Subsections of this part will be adapted based on the specific type of POC 
under evaluation. 
 

3. III. Participation Instructions: 
 
Although optional, this section provides essential information to potential clients for certification and oper-
ators conducting the trials. It may include safety instructions, client-provided hardware requirements, data 
exchange formats, result communication procedures, and other relevant information. 
 

4. IV. Roadmap: 
 
Lastly, a provisional roadmap is established to guide the completion of POCs by early 2024. This roadmap 
highlights key milestones, anticipated deadlines, and provides an overview of the certification process. It 
will be continuously adjusted based on progress and results obtained during the POC evaluations. 
 
This integrated methodology offers a holistic approach to the evaluation of autonomous vehicles, ensuring 
a thorough, reproducible assessment that aligns with safety and performance standards in the ever-evolv-
ing field of embedded AI. 
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Of the 5 POCs selected, two (those of UTAC and TRANSPOLIS) are generalizations of the homologation 
regulations already in force in the automotive field, and therefore enable us to see in the short term what 
will be possible to do on track tests to take AI into account. Two are based on the addition of cutting-edge 
technology to traditional tests (from INRIA/TRANSPOLIS, using augmented reality, and from IGN/VALEO, 
using precision sensors on tracks), which means we can envisage the benefits of adding new technologies 
to conventional track tests. Lastly, CEREMA and LNE have demonstrated the potential benefits of bench 
testing and hybridization with simulation for conditions that are difficult to control on runways (weather 
degradation in this case). The aim of choosing these 5 POCS is to cover a wide range of track and bench 
tests that will be implemented in the short and medium term for the POCS, and to show how to develop a 
protocol for each of these types. 
 
 
It's worth noting that some of these POCS also have simulation parts. These parts will of course have to 
respect the protocol set up in deliverable 2.7 for their simulation part. 
 
 
 
 

Chapter 2: UTAC POC: “Increase existing regulations for AI-based 
ADAS certification (POC IER)” 

 

1. INTRODUCTION  
 
 
AI based vehicles could have some safety weak points regarding repeatability, robustness, anticipation 
and overfitting for official known tests. So UTAC PRISSMA WP3 team has built first answers and proposals 
to adapt or to create new homologation tests scenarios / protocols / testing tools / evaluation metrics for 
the first WP3 POC tests in UTAC (February to July 2023). These tests have been analyzed and discussed, 
requirements have been built, and tests and protocols have been confirmed. That is presented in this 
deliverable. The second WP3 POC tests planed 22 and early April of 2024 will bring confirmation and if 
necessary fine tuning of them. 

Our Inputs are deliverables of PRISSMA WP1 (particularly L1.4), WP2 & WP4 & WP6 (particularly sce-
narios for virtual/physical/open-road tests) , WP8 (regulation/standards first works); We also preliminary 
made a review of available vehicles with intelligent & predictive ADAS functionalities, and made a bibliog-
raphy/state of the art of research works & papers related to « tests for AI & AI for tests » and to AI evalu-
ation tools & metrics in the critical industries (planes, trains,..).   

UTAC WP3 chose to test three vehicles ( VW Golf 8 with predictive ACC, ZOE NEXYAD « MotorONE » 
research prototype with AI based anticipation driving, VALEO Drive4U taxi robot) , with three categories 
of new tests (repeatability & robustness, anticipation, overfitting) , with some existing or new scenarios ( 
standing pedestrian, hidden crossing pedestrian, strong curve/intersection,…) & existing or adapted test-
ing tools ( new various pedestrian dummies , …), with new evaluation metrics ( measure of performance 
of Automated emergency breaking but also of anticipation and no-use of emergency maneuvers like 
AEB,..).  

Vehicles Homologation rules, protocols, tests and requirements are very simple, due to economical, tech-
nical and harmonization reasons: it cannot require hundreds of tests, neither thousand of physicals and 
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virtual tests, because digital type approval is only in discussion and such amendment for all vehicle func-
tions and regulations will not arrive before 4 years. So, it was very difficult to apply WP1/WP2 recommen-
dations for metrics, needing thousands of tests results; Finally, our results and recommendations are 
mainly four series of new homologation tests and protocols (for repeatability, robustness, anticipation and 
overfitting) with 18 scenarios and basic proposals (binary KPI) for new metrics and requirements. Note 
that this is already quite far ahead compared to on-going regulation and Euro NCAP discussions about AI-
based vehicles homologation or evaluation.  

        
 

1.1 OBJECTIVES  

The main objective of WP3 UTAC is to prepare the adaptation of approval tests for AI-based vehicles, and 
to build relevant and feasible tests and protocols to type approve vehicles with AI.  

To do that we had also these two objectives:  

- what kind of AI could happen in the future and in which systems/functions/vehicles? 

- what are the proposals and how to use recommendations of PRISSMA other WP’s: WP1 for AI 
evaluation & metrics, WP2 for virtual tests, WP6 for safety recommendations, WP8 for link with 
ecosystem and outside of the Project 

 

1.2 CONTEXT and STATE OF THE ART  

1.2.1 Main trends for AI deployment in vehicles, systems, subsystems  

AI will arrive gradually in all vehicle functions, first perception, then route planning, trajectory, and control, 
Driver Monit, IHM, maneuvers like automated minimum risk maneuvers (MRM). 

One paper discussed in pre-regulatory work of the GRVA automotive regulation group concluded that AI 
is necessary for automated vehicles because human driving behaviour and best practices are not pre-
cise/quantitative requirements, not programmable for an automate, but can be learned by AI system. It 
could arrive on premium-automated vehicles in 3 years. 

Experts do not see on-board « live » learning in vehicles in the short/medium term, as this would lead to 
changes in vehicle behaviour that are impossible to validate. OEM process is to validate and freeze a 
software for a certain time, generally one or three years (batch learning process). 

An IA system is not deterministic, does not meet a specification; It is a black box that can only be validated 
statistically: 
 - On potentially dangerous scenarios 
 - In relation to requirements/criteria/metrics which remain to be defined (data and learning, devel-
opment, outcomes and safety) 

 
There is therefore a need for new metrics, pre-critical scenarios, other than the world of ADAS.  
 
A catalogue of critical scenarios will be known/learned by AI! And will not offer rare scenarios. 
 
The AI only masters what it has learned (Operational Design Domain (ODD)), so we will need tests of 
robustness (edge case), very numerous & expensive therefore if possible virtual.     
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But to be able to perform these virtual tests , the OEM models of sensors, fusion, vehicle decision, vehicle 
control, actuators commands…will be required, and also a huge computing capacity ; Hence, the current 
projects and attempts to communalize the means of simulation by subcontracting them , and also oppor-
tunity for the regulations to require that the OEM model be provided for certification and that the data that 
led to the training be shown. Or at minimum that the Certification Technical Service provides the OEM 
secret randomized scenarios (corner case defined with the OEM at the limit of its ODD), for OEM testing 
them in SIL-HIL-VIL. 

The LNE experts clearly see for the future the approval of components made by LNE and the AI-based 
vehicle approval made by UTAC.    

A predictive model will be needed for type approval if no OEM model is available, for three objectives.  
- for many simulations for safety virtual verifications 
- for some approval physicals tests of robustness verification (identify the edge cases to be tested) 

and verification of the correlation tests/simulation 
- for explanatory-interpretability (understand-explain the black box).   

 
So, a lot of testing will be needed to build a simplified predictive model by predictive modelling. 
 
For the approval, an audit will also be necessary (of the database and learning, validations,). 
 
Both will be approved:  AI and each AI-based vehicle (according to AI act)  
One example of this is the Cyber Security and SW/OTA approval process. 
 
Today GRVA regulation group discussions are not very advanced and target to evaluate if existing or soon 
existing regulations could be sufficient to verify AI-based vehicles safety:  Complex systems safety audit 
annexes, EU AI act, UN-ECE software update and cyber regulations (UN-ECE R155 & 156 regulations).  
These regulations mainly require audits (of AI and software development, validations, production, repara-
tions, data management, and safety assessment for robustness and black box assessment) but not addi-
tional & standardized tests to evaluate vehicles on testing tracks. 
 
Another big problem with AI right now is perception, very hard to work out.  It is also very difficult to specify 
an ODD in perception (examples: objects, sunset truck, pedestrian morphology, weather characteristics). 
Therefore, it is very difficult to make a specification of perception and to validate the perception function 
(OEM needs & type approval). 

Therefore, it is very difficult to assess the reliability of a perception subsystem (allocation of requirements 
for reliability, which is necessary for the safety of operation). 

AI will arrive in a few years into the vehicles decision systems, because on-screen learning over thousands 
of kilometers of filmed driving becomes possible.  

For Predictive and explanatory models, OEMs need and work on it and are in much better position than 
the Technical Approval Service to have or build them. 

The Technical Service of approval must however be competent (as in Safety or cyber), or even offer it to 
small OEMs (via the projects and programs French or European as TEF).  

These principles have been taken into account during all our activities and reflections on PRISSMA WP3. 
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1.2.2 Adaptation of tests according to vehicle ODD and PRISSMA WP8 inputs  
 
According to the requirements of all autonomous vehicle regulations (ALKS, ADS, draft of the Arreté fran-
cais autonomous urban shuttles), the OEM will have to declare to the customers and to the type of approval 
authority its ODD (Operational Design Domain). 

For example, an OEM will declare that its autonomous driving functionality are safe and operational for 
speeds of not more than 30 km/h. 

This constant of the ODD is therefore an important input for the approval tests of automated vehicles: 
these limits are the limits on which the AI based vehicle will be tested, verified and type approved. 

As will be seen in the chapters below, while remaining within the budget and time constraints of WP3 
PRISSMA, we have tried to find vehicles with different driving systems with AI and different ODD, as varied 
as possible, in order to solidly build our proposals to adapt type approval tests for all kind of AI-based 
vehicles. 

1.2.3 Adaptation of tests according to OEM homologation safety audit and first WP6 inputs 
 
PRISSMA WP6 constructs and adapts the safety audit of the vehicle type approval. 

There is consensus on PRISSMA that the approval process of an AI based vehicle should begin with this 
functional safety audit, which will provide first inputs and themes and priorities for the approval tests & 
verifications. 

We summarize this by the diagram below that was one of the conclusions of the WP3 + WP4 meeting of 
16/09/2022:  

 

  WP6 audit (vehicle safety weak points / validations, ODD & vehicle limits) 

      

  WP2 virtual approval tests for dangerous/complex scenarios 

  WP3 physical approval tests for ODD limits scenarios & critical scenarios 

 

  WP4 physical approval tests on real open roads for real tests & verifications 

 

1.2.4 Adaptation of tests according to needs/complementarity with virtual tests/open road tests 
(WP1 & WP2 & WP4 inputs). 
 

As above written, Regulation and type approval tests could change and allow some virtual tests in a few 
years, allowing complementarity and using tests developed in PRISSMA WP2 (virtual tests) and in 
PRISSMA WP4 (open road tests), depending on several dimensions:  

The first dimension is the hazardous, feasible, or expensive nature of physical testing, which simulation 
enables to avoid. 
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The second dimension is the digital model availability for virtual testing: will the manufacturer provide ex-
ecutable software models? 

The 3rd dimension is the time available for approval, as virtual tests sometimes require more time of prep-
aration than closed track tests, and as open road tests allow a lot of representatives and relevant tests 
(but not dangerous nor critical) in a short time. 

 

1.2.5 Inputs from WP1 for methods and metrics to evaluate IA repeatability, robustness, and over-
fitting. 
 

WP1 and in particular its deliverable L1.4 of October 2022 aim to provide an overview of the state of the 
art and recommendations on methods and metrics to evaluate systems based on AI. 

The pages 57-59 of the PRISSMA deliverable L1.4, reproduced below, recommend three types of vali-
dation tests:  perturbations, robustness, uncertainty:  
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First Recommendation of ‘perturbation in black box’ robustness tests are difficult and expensive 
for physical testing. 
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To evaluate the robustness of a system with IA, this deliverable L1.4 recommends on page 54 of “adver-
sarial attacks in black box”, in order to see what the reaction of the system is and then gradually to adjust 
the attack to the system.  

These attacks (or perturbations) with misleading data/configurations and at the limit of the system ODD 
are possible in the machine learning phase of an AI but also in the operational phase; For very famous 
example, AI based sensor vision were attacked by road signalization panels with little black rectangles. 
 
The work of WP5 (cybersecurity) aims to protect the database for AI learning because to know this data-
base is very helpful to attack it in operational phase. 
 
Attacks (or disturbances) of corruption are also recommended, that is with data/configurations for 
use unavoidable & normal but misleading because at AI limits, like weather limits (fog, snow, cold, vibra-
tions or movements decreasing image quality). The AI based system can be weak on these limit conditions 
because it made very learning on them. 
 
But, according to the meeting with the AI expert and leader of WP1, Rémi Regnier, on 7/9/2022, these 
attacks are easy and relevant in virtual tests but difficult and expensive in physical tests because a step-
by-step process is necessary to identify the system limits. 
 
 
Second Recommendation of robustness tests:  

 
This type of testing seems to be very suitable for closed-track testing by UTAC, according to the same 
meeting with the AI expert and leader of WP1, Rémi Regnier. 
 
So, we will see further we developed many new robustness tests through the 2023 POC in UTAC testing 
tracks with three different, representative and intelligent vehicles. 
 
 
Third Recommendation for uncertainty testing (repeatable/stable or chaotic system)  

 
Again, these tests seem suitable for closed track UTAC tests, according to the meeting with AI expert and 
WP1 leader Rémi Regnier. 
 
These tests assess the uncertainties of the system due to the different dispersions/ margin of error of its 
components (sensors, position & RTK ...) and the propagation of uncertainty in the neuronal networks of 
the AI system. 

 
The system will be validated repeatable and stable if for very close inputs, there are very close results, 
otherwise it will be labelled chaotic.  
 
So, we will see further we developed new repeatability tests through the 2023 POC in UTAC testing tracks 
with three different, representative and intelligent vehicles. 
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1.3 FUNCTIONS TO TEST IN HOMOLOGATION AND AI-BASED Functions  
 

Vehicle type approval doesn’t address systems, components, subsystems but only the whole vehicle per-
formance, verifying that functions are safe (verification of compliance with regulation and regulation type 
approval tests): braking, steering, automated functions like ACC (automated cruise control), AEBS (auto-
mated emergency braking system), ESF (emergency steering function), ALKS (automated lane keeping 
system), ADS (automated driving system), AVP (automated Valet Parking), …  

Therefore, UTAC WP3 worked only on the whole vehicle testing and evaluation,  

In addition, defined which intelligent vehicles to use for 2023 POC tests and for building new tests, proto-
cols, metrics and requirements. 

For that during all PRISSMA project we had discussions and meetings with UTAC experts, PRISSMA 
experts, and OEM’s experts. 

The exchanges with the UTAC experts made it possible to have the inputs and first visions of new intelli-
gent ADAS functions and of regulatory and consumerist works (Euro NCAP). 

The discussions with PRISSMA and OEM’s experts provided a technological vision of progress of AI and 
of AI possible applications for automotive industry, they also provide options and ideas of solutions to 
evaluate and type approve AI based vehicles. 

 

1.3.1 UTAC Expert inputs: New Intelligent Speed Control Functions 
 

UTAC is taking part in all regulation groups and the trend is clear: the priority for these groups is to chal-
lenge anticipation and prevention. The regulation DCAS working group plan to build in 2024 a new regu-
lation, called DCAS (entry in force in 2025), but requirements for these first version will mainly address 
driver monitoring and a L2+ function (hands-off eyes-on driving assistance). UTAC experts think we will 
have to wait 2024, 2025, or more for an amendment of this DCAS regulation to see the first requirements 
and evaluations for prevention and anticipation functions. 

As it is often the case, Euro NCAP is the precursor and incentive for new driving intelligent functions that 
will improve safety. These new functions, called Speed Limit Information Functions (SLIF) and Speed Limit 
Control Functions (SLC), do arrive in the future Euro NCAP safety assessments, which are still unofficial 
and are being discussed in the Euro NCAP WGs (in which UTAC participates). 

In SAS 2023 protocol, The Euro NCAP has introduced bonus points in its vehicle evaluations if such func-
tions of driving can manage (with an alert to the driver or with an automated speed reduction) the situations 
in the figure below, called features:  
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Euro NCAP is well aware of nature/numbers/root causes of road accidents in the main European countries 
and is convinced on the well-known fact (and widely shared by the French authorities in charge of road 
safety, DSR and ONISER) that excessive speed is the main cause of road accidents. 

Euro NCAP will increase in 2026 protocols the challenging and rating of these intelligent speed control 
functions. 

  

The French Working Group ‘rating level 3 Euro NCAP’, led by UTAC and attended by French manufactur-
ers (Stellantis, Renault, Valeo) has the same vision and confirms (see figure below) that the best auto-
mated vehicle is the one that avoids emergency maneuvers through the use of intelligence and anticipation, 
as the human driver know to drive:  
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At the LNE Forum for Evaluation of AI on 24 November 2021, during the round table UTAC               confirms 
this vision with the following example: « an intelligent vehicle should not have to choose between crashing 
an old woman crossing or a baby running on the road, il should be able to anticipate and to avoid this 
critical situation ». 

 

1.3.2 The proactive ACC and the ‘safe speed’ developed by the French start-up NEXYAD 
Among all the manufacturers contacted for the UTAC tests of the POC of PRISSMA WP3, NEXYAD is 
clearly the most skilled about anticipation functions, working for more than 10 years on AI based intelligent 
automated driving functions. 

NEXYAD has gained experience since the 2000s through 12 collaborative research programs with road 
safety and infrastructure experts from 19 countries, and NEXYAD has developed a new driving function-
ality that estimates road risk and therefore adapted and relevant safe speed. This relevant speed can be 
lower than authorized speed limit!  

NEXYAD calculates in real time the level of risk of the situation , according to the context (infrastructure, 
traffic, presence of vulnerable persons, ...), according to speed, configuration of the road, signaling, visi-
bility, proximity, ... and according to more than 5000 rules built by IA from a database of road accidents 
built during its experiment on 12 collaborative research programs with road safety and infrastructure ex-
perts during 10 years and in 19 countries. 

The level of risk calculated by NEXYAD, called safety score, is illustrated with the figure below, and the 
common-sense principle that « to drive safe with a low risk, you have to stay in green situations and not 
be close to red high-risk situation »:  

 

NEXYAD also agrees with the principle and consensus (Euro NCAP, French authorities DSR and 
ONISER), that speed is the main cause of road accidents.   

NEXYAD has studied accidents extensively (over 10 years and in 19 countries) and estimates that the 
prudent driving and anticipation, at the very beginning of the chain, represent 99.9% of the behaviours 
observed. Risk behaviours that do not have consequences are absent from the statistics, but they do exist 
and sometimes lead to emergencies, which are rare but focus all the attention of manufacturers and OEMs. 
Fatal accidents are even rarer (around five deaths per billion km in the OECD). 

Thus, NEXYAD is very advanced in accident analysis, and is almost the only one to have a numerical 
analysis (in probability) not of accidents but of the near-accidents : See figure below, the road accidents 
and near-accidents tree, in which NEXYAD estimates that for one accident there have been 69 near-
accidents, that is potential accidents that have been avoided through good driver reactions ; NEXYAD 
used these 69 potential accidents to build its anticipative system, which have to anticipate them, like a 
good and prudent human driver : 
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Two new innovative and intelligent proactive functions developed by NEXYAD :  

 

 

Thus, NEXYAD has developed (and patented) two new functions of intelligent driving, and is in discussions 
with many French, German and Japanese manufacturers to market them: these driving functions use the 
estimation of the risk of NEXYAD and the consequently relevant safe speed to have to minimise the risk 
and stay in the green zone of driving risks (previous figure). 

The risk is estimated according to the road map (arrival on a steep curve, a tight crossroads...) and also 
what the vehicle sensors see (vehicle poorly parked, crowded crossroads, low field of vision 

NEXYAD's two innovative and intelligent proactive driving functions are:  

• A safety assistant (named "safety coach") who alerts the driver when his driving behaviour is 
no longer prudent (risk to high) in relation to the driving context (accident reduction estimated by 
NEXYAD of at least 25%). 

• An intelligent and proactive ACC that automatically regulates the vehicle speed according to the 
driving context (up to 75% accident reduction according to NEXYAD) 

• NB the difference in the result between 25% reduction of accident in alert mode compared to 75% 
of the intelligent ACC mode is explained by the fact that the driver may not immediately and always 
take into account the warnings and not slow down. 

 

These two new functions are being implemented on a prototype vehicle, the NEXYAD DREAMOTOR1, 
see photos below, which is therefore one of the most advanced prototypes in the world (On PRISSMA 
there is no French actor among vehicle manufacturers and it’s difficult to know their skills and develop-
ments on these very upstream and very competitive subjects). NEXYAD is part of the French industrial 
research and development group of the Regions Normandy/Ile de France, called NEXTMOVE (previously 
MOVEO), which supported and facilitated these innovative projects. 

 

Sources:  
Expert orders of magnitude 
OECD, NSCL, CETRA, 
All types veh, all roads, 
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This prototype vehicle was rapidly tested in September 2022 by the team PRISSMA of the UTAC, on a 
one-hour circuit, allowing identifying interesting scenarios for PRISSMA tests in 2023; This prototype was 
not fully operational in March or April 2023, so we had to wail July 2023 to test it in PRISSMA 2023 UTAC 
POC & tests.  

To find the best intelligent vehicle to test in UTAC WP3, our position was clear: either NEXYAD prototype 
is ready for WP3 POC 2023 tests, or we have to find another interesting up-to-date intelligent vehicle, that 
means to rent an up-to-date level 2 commercialized vehicle like a Tesla or a Mercedes. 
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1.3.4 Other AI-based vehicles available and testable for UTAC PRISSMA WP3 tests & POC : 
 
According to that the objective of WP3 part UTAC is to prepare for the adaptation of the approval test to 
AI based vehicles, our needs were ideally to make these tests on different vehicles with a maximum of AI 
on board, not only like today on camera sensors. 
 
Rent an up to date automatized vehicle.  
like the New level3 Mercedes Class S, photo opposite,  
recently approved for German motorways  
was therefore an interesting opportunity.  
However, the vehicle has still not yet been approved for  
the French motorways and no cooperation exist with the  
constructor to enable the driving function  
(ALKS) in France, and to have access to the results internal to the vehicles and its computers and functions. 
Another point is that today the Knowledge of technology content, AI, and performance of this new vehicle 
is very limited. 
So, this opportunity seems a little premature even for the second part in 2024 of the UTAC WP3 tests. 
 
 
The opportunity of 2 VEDECOM Easy Mile  
autonomous shuttles have also been studied. These two  
shuttles, see opposite figure, were experimented on open roads.  
more than 1 year on a circuit linking a bus stop and the  
VEDECOM site in Versailles-Satory. 
But here too, this approach has not been taken, because it is 
from the older generation of shuttles, with few AI available  
and which have only been validated with the manufacturer  
only on a few predefined and fixed paths.   
Therefore, it should also be necessary to benefit from a wide collaboration with the manufacturer before 
being able to make any test. 
 
 
We also came to the same negative conclusion for the opportunities of testing:  
 

- the ‘old’ shuttle ARMA NAVYA from the UGE, proposed by UGE for UTAC tests 
 

- the autonomous Renault ZOE of INRIA in Grenoble, which is technically very interesting but not 
available because already used for WP3 TRANSPOLIS POC in Lyon. 
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1.3.5 German commercialized vehicles with intelligent predictive ADAS  

 
Most Volkswagen vehicles (Golf 8, Arteon 2017, ID3, Nouvelle Polo,) propose a predictive ACC, capable 
to read (with on-board cameras) agglomeration entrance/exit speed limitation signs and (with road HD 
maps) strong curves (of roads, roundabouts,), and also capable to automatically adapt its speed through 
the ACC function. 
 
This is a basic predictive driving feature, but without many AI and machine learning nor driving risk evalu-
ation as NEXYAD proposes. 
 
 
Here below is a good summary of this functionality of the Golf 8, found on commercial advertising:  
 
“Adaptive Cruise Control ACC helps you to maintain a previously set maximum speed and a predefined 
distance to the vehicle ahead. In conjunction with a navigation system, ACC is enhanced by predictive 
cruise control and a cornering assist function. 
ACC can adapt the vehicle speed to the applicable speed restrictions and course of the road (bends, 
roundabouts, etc.)”. 
 
That’s the same for SEAT vehicles (which is a Volkswagen Group brand) . 
 

 
 
 
The Audi brand also offers regulation of Predictive Speed (on A4, Q3, Q7...), see here below: 
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The users of these predictive ACCs testify on the internet to the effectiveness of this function, and are 
satisfied with the flexibility of the speed regulator which automatically detects and adapts the vehicle speed 
before entering on a roundabout or on a strong curve. 
 
However, there are also many dissatisfied people who say that they no longer use this function (by 
disabling it) because it regularly generates false alarms (false positives) and sharp slowdowns or even 
sharp brakes when there is no risk, just because they read speed limitations signs from others close roads 
or from incorrect roadmaps datas.  
 
that is also why many trucks have now this function: MERCEDES, DAF Trucks... 
 
The predictive ACC function is also proposed in the after-sales (second assembles), but in this case, it is 
rather the community of users that indicates the zones where it is necessary to slow down. 
 
The French or Japanese manufacturers do not offer any ACC predictive, but announcement could be 
imminent from STELLANTIS and NEXYAD. 
 

VW GOLF 8 predictive ACC 
 

We finally chose the GOLF 8 for PRISSMA UTAC WP3 tests in 2023 after preliminary tests. 

These tests confirmed that VW Golf 8 and its predictive ACC is an up-to-date and intelligent function, 
representative of today best intelligent commercialized functions, and so interesting to test in the UTAC 
POC in order to estimate its performance and define new tests related to repeatability, robustness, antici-
pation & overfitting verification of intelligent functions. 
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Golf 8 predictive ACC (called Travel Assist) description: 
  
The system combines two driver assistance functions, Adaptive Cruise Control (ACC) for longitudinal as-
sist and Lane Assist for lateral assist. 
 
This function is activated by a button on the multifunction steering wheel, which therefore triggers longitu-
dinal speed assist and lateral position assist. For safety reasons, the driver must keep his hands on the 
steering wheel for the guidance to be effective.  
 
To this longitudinal speed guidance can be added an anticipation function. The system calculates the 
position of the Golf based on GPS and route data from the navigation system and must adapt the speed 
in advance to the approach of bends, roundabouts, crossings, speed limit zones etc… 
At the same time, it uses the traffic sign recognition system via the front camera and must adapt the speed 
as soon as a limitation is detected.  
 
The "Travel Assist" function is activated by pressing the steering wheel button:  

 
 
 
A reasonable speed instruction is given to the system at the start depending on the environment.  Pre-
tests of several minutes were carried out on UTAC 3 types of tracks (roads, city, and highway) with acti-
vation of "Travel assist".  During driving, the so-called "anticipative" feature could be observed in different 
places, approaching a bend or a dangerous curve by this type of message on the Dashboard:  
 

 
 
This message was followed by an automatic speed adaptation by braking the vehicle, at the speed rec-
ommended by the message. 
The adaptive function by reading the speed limit signs could also be observed, for example when passing 
a traffic sign 110kph:  
 

« Bend ahead, 45 
km/h » 
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This message was also followed by an automatic speed adaptation by braking the vehicle, at the speed 
read on the traffic sign. 
 
 
 
 
Main interesting observations:  

 
o Highway tracks: 

Interesting track with several adaptive reactions of the system: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

o Road tracks: 
 

Some speed adaptations in curves: 

 
 
Appearance of an additional pictogram when driving on the road circuit, dangerous turn sign before almost 
every bend. 
 
 
 
 

o City tracks: 

Detection of 90kph traffic sign. 
Message “Speed Exceeded” 
Driver brake because speed too high 
 

Detection of 50kph and 70kph traffic sign. 
 
Message “Speed Exceeded” 
Driver brake because speed too high 
 

Lecture panneau 90kph 
Adaptation vitesse OK 
 

« Bend ahead, 80km/h » 
Adaptation speed OK 
 
 

Wrong detection of 50kph sign, for the exit 
Strong speed reduction NOK 

Detection of 110kph traffic sign.  
Speed adaptation OK 
 

« Bend ahead, 60km/h » 
Adaptation speed OK 
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No anticipation was observed on this track. 
 
 

1.3.6 Conclusion for UTAC PRISSMA WP3 POC and tests:   
 
We identified what are.  

- the state of the art and the main trends for AI-based vehicles and functions 
- the inputs of PRISSMA other WP’s  

 
We made large review of potential vehicle to test, we made preliminary tests, and we finally chose three 
interesting and representative AI-based vehicles:  

- ZOE NEXYAD,  
- VALEO Drive4U,   
- Volkswagen Golf 8 

 
We also made pre-test of these three vehicles to identify and chose which scenario are managed or not 
by these intelligent functions. 
 
We developed through 2023 UTAC tests new scenarios and protocols in order to test and evaluate IA 
repeatability, robustness, anticipation and overfitting. 

As we prepare homologation tests, we chose to develop critical and difficult scenario tests and protocols, 
usual and relevant for type approve tests. 
 
2. TESTS and PROTOCOLS  

 

2.1 Preamble and functions to evaluate. 
 
First, as explained in chapter 1.3, many AI-based functions have to be type approved (which means to 
verify compliance with regulation requirements & type approval tests):  

- Braking (UN-ECE R13 regulations)  

- Steering (UN-ECE R79 regulation)  

- automated functions like ACC (automated cruise control), (no regulation today) 

- automated Lane Keeping Warning / Alert / Centering functions (no regulation today) 

- AEBS (automated emergency braking system) (UN-ECE R152 regulation)  

- ESF (emergency steering function), (UN-ECE R79 regulation amendment)  

- ALKS (automated lane keeping system), (UN-ECE R157 regulation) 

- ADS (automated driving system), (EU ADS regulation)  

- AVP (automated Valet Parking), (EU ADS regulation) 

- Etc.  

Some of these regulations requires only one to three type approval tests (breaking, steering), but some 
others require 20 to 40 type approval tests (AEBS, ALKS, ADS). 
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Secondly, as explained in chapter 1.2, according to the requirements of all autonomous vehicle regulations 
(ALKS, ADS, draft of the Arreté francais autonomous urban shuttles), the OEM will have to declare to the 
customers and to the type approval authority its ODD (Operational Design Domain).  For example, an 
OEM will declare that its autonomous driving functionality are safe and operational for speeds of not more 
than 30 km/h. 

In addition, the ODD limits will define the tests and the limits on which the AI based vehicle will be tested, 
verified and type approved. 

For these two reasons, PRISSMA project duration and budget are not enough to investigate adaptation of 
all functions and all type approval tests for AI-based vehicles.  

Therefore, we investigate the most important existing scenarios (and most frequent in these regulations 
and in road accidents), and how to adapt them for AI-based vehicle with potential safety weak points on 
repeatability, robustness, anticipation and overfitting.  

We also develop new scenarios to evaluate anticipation and overfitting of AI-based vehicles. 

So finally, we built a catalogue of 18 existing or new scenarios, to verify during vehicles or functions ho-
mologation that there are no weak points related repeatability, robustness, anticipation and overfitting.  

These tests can be chosen when they are relevant for the considered vehicle/function/r.  

These new tests and scenario are quite far ahead compared to on-going regulation or Euro NCAP discus-
sions to evaluate AI-based vehicles, as discussed in chapter 1.2 CONTEXT and STATE OF THE ART:   

Today GRVA regulation group discussions are not very advanced and target to evaluate if existing or soon 
existing regulations could be sufficient to verify AI-based vehicles safety:  Complex systems safety audit 
annexes, EU AI act, UN-ECE software update and cyber regulations (UN-ECE R155 & 156 regulations).  
These regulations mainly require audits (of AI and software development, validations, production, repara-
tions, data management, and safety assessment for robustness and black box assessment) but not addi-
tional & standardized tests to evaluate vehicles on testing tracks. 
 
Therefore, our proposals of about 6 new scenarios to tests and new metrics to verify AI-based vehi-
cles/functions (on repeatability, robustness, anticipation and overfitting) still remain to be presented and 
discussed to this GRVA regulation group. 
 
All the following new tests are below described and specified, using EUNCAP (Euro NCAP) references 
and standards, AEB or SAS or AD protocol, depending on the functions to be tested.  
 
ENCAP has been taken as a model because this is a well-known and mastered protocol; also, their re-
quirements are stricter than Regulation Protocols and can reveal the weakness of an AI system. 
 
Furthermore, most of the vehicles with ADAS and without AI can handle the Regulation Protocol quite 
easily, whereas the ENCAP Protocol can point out some weaknesses of the systems. The goal is to chal-
lenge the AI system with harder situations. 
 
Below the specifications of ENCAP Protocol that are common to all our tests proposals:  
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2.2 Critical scenarios and repeatability  
 
The first category of testing is about Repeatability, the goal is to perform many repetitions of a given sce-
nario, with the same conditions and verify if the performance is similar. 
 
Today, on a vehicle equipped with classic ADAS systems (ex: AEB), we note that the performances are 
not always repeatable. Here are some examples of repeatability results on ENCAP scenarios: 
 
Pedestrian scenarios: 

 

 

 
 
Car to Car scenarios: 
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Bicycle scenarios: 

 
 
The goal is to see if the AI on the last ADAS system increases the performances or not, compared to a 
system without AI. 
 
The following scenarios will be performed 10 times each.  

2.2.1 CPNCO-50 (Car to Pedestrian Nearside Child Obstructed 50%) 
This scenario refers to the ENCAP 2023 protocol:  
 

 
 
Car-to-Pedestrian Nearside Child Obstructed 50% (CPNCO-50) – a collision in which a vehicle travels 
forwards towards a child pedestrian crossing (5kph) its path running from behind and obstruction from the 
nearside and the frontal structure of the vehicle strikes the pedestrian at 50% of the vehicle's width when 
no braking action is applied. 
 

2.2.2 CPFA-50 (Car to Pedestrian Far side Adult 50%) 
This scenario refers to the ENCAP 2023 protocol:  
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Car-to-Pedestrian Far side Adult 50% (CPFA-50) – a collision in which a vehicle travels forwards towards 
an adult pedestrian crossing (8kph) its path running from the far side, and the frontal structure of the vehicle 
strikes the pedestrian at 50% of the vehicle's width when no braking action is applied. 

2.2.3 CBLA-50 (Car to Bicyclist Longitudinal Adult 50%) 
This scenario refers to the ENCAP 2023 protocol:  
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Car-to-Bicyclist Longitudinal Adult 50% (CBLA-50) – a collision in which a vehicle travels forwards towards 
a bicyclist cycling (15kph) in the same direction in front of the vehicle where the vehicle would strike the 
cyclist at 50% of the vehicle’s width when no braking action is applied. 
 

2.3 Critical scenarios and robustness 
 
The second category of testing is about Robustness, the goal is to perform many variants of a given sce-
nario and verify if the performance is similar. 
 
For examples, we can change the speed of the target, the colour of the clothes… 

2.3.1 CPNCO-50 (Car to Pedestrian Nearside Child Obstructed 50%) 
Same scenario as 2.2.1 with different alternative of it. If the obstruction is too harsh, it can be removed. 
 
 
 
 
 
 



[L3.3] Protocol for the second test campaign 
 
 
 
SPEED CHANGING: 
- Child running at 6kph  
- Child Start @3kph and accelerate @6kph 
 
 
FORM CHANGING: 
- Child wearing a backpack 
- Child with a stuffed toy 
 
COLOR CHANGING: 
- Child with yellow jacket 
 
SURROUNDING CONDITIONS  
CHANGING: 
- Strong Light in front of VUT 
 
 
 
 
 
ANGLE CHANGING: 
- VUT angle >90° (To be defined)                                  - Child angle <90° (To be defined) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.3.2 CPFA-50 (Car to Pedestrian Farside Adult 50%) 
 
Same scenario as 2.2.2 with different alternative of it: 
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SPEED CHANGING: 
- Pedestrian 5kph 
- Pedestrian starts 5kph and accelerate 8kph 
 
FORM CHANGING: 
- Group of Pedestrian waiting and 1 moving 
- Pedestrian with backpack 
 
COLOR CHANGING: 
- Pedestrian with yellow jacket 
 
SURROUNDING CONDITIONS  
CHANGING: 
- Strong Light in front of VUT 
 
ANGLE CHANGING: (similar as CPNCO with angle changing) 
- VUT angle >90° 
- Pedestrian angle <90° 
 
 
 
 

2.3.3 CBLA-50 (Car to Bicyclist Longitudinal Adult 50%) 
Same scenario as 2.2.3 with different alternative of it: 
 
 
SPEED CHANGING: 
- Bicyclist Starts 10kph and accelerate 20kph (to be confirmed at first tests) 
- Bicyclist 25kph? (To be confirmed at first tests) 
 
FORM CHANGING: 
-  Bike with cargo rack 
-  Adult with backpack 
 
COLOR CHANGING: 
- Adult with yellow jacket 
SURROUNDING CONDITIONS CHANGING: 
- Strong Light in front of VUT 
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OVERLAP CHANGING: 
- 75% (symmetry of 25% usual case)                                       - 5% (bike close to road edge) 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

 

 
 
 

2.3.4 Stationary Car on Emergency Lane 
A stationary car is stopped in an emergency lane, with a traffic sign (red triangle), different position of the 
stopped vehicle:  
 
-50%: 
 
 
 
 
 
 
- 25% (To be defined): 
 
 
 
 
 
-0% (edge limit): 
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2.3.5 Stationary object or dazzling light on Highway 
 
-Stationary Object: 
 
 
 
 
 
 
 
- Dazzling light (difficult perception): 
If possible, it will be performed at the 
exit of the highway Tunnel 

 
 
 
 
 
 
 

2.4 Pre-critical scenarios (anticipating avoiding AEB/critical maneuvers) 
 
The third category of testing is about Anticipation, the goal is to perform some classic scenario by changing 
some conditions to see if the vehicle can anticipate a potential danger (without activation of AEB). 
Each scenario will be repeated twice (two runs per scenario). 
 

2.4.1 CPNCO-50 (Car to Pedestrian Nearside Child Obstructed 50%) 
 
Same scenario as 4.2.1 with different alternative of it: 
 
-Without Obstruction:                            -Stationary Child (edge of pedestrian crossing): 
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2.4.2 CPFA-50 (Car to Pedestrian Far side Adult 50%) 
Same scenario as 4.2.2 with different alternative of it: 
 
-With Obstruction:                                    -Stationary Adult (edge of pedestrian crossing): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

2.4.3 CBLA-50 (Car to Bicyclist Longitudinal Adult 50%) 
Same scenario as 4.2.3 with different alternative of it: 
 
-With different bearing:                                  -Bicycle close to VUT path (cycling track): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.4.4 Anticipation without Target 
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-Pedestrian Crossing, Green Traffic light and obstruction (potentially hidden pedestrian):  
 
 
 
 
 
 
 
 
 
-Approach of strong curve (ex: roundabout) with late traffic sign:  
 

 
 
 
-Traveling on highway (ex: 90kph limited) and lower speed traffic sign visible (ex: exit): 

 
 
 
 

2.4.5 Car to car 
- Target Cut-in followed by a braking: 
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The same configuration as ENCAP Highway Assist can be used for the Cut-in part.  
This maneuver is followed by a braking of the target with a deceleration of 2m/s² or 6m/s² (same as ENCAP 
protocol). 
 

2.5 New random scenarios (to avoid the over-learning of AI (overfitting)) 
 
The last category of testing is about random situation, the goal is to perform some random scenario that 
(in theory) have never been met by the vehicle.  
 
Each scenario will be repeated twice (two runs per scenario). 

2.5.1 Pedestrians Crossing with two dummies: 
Two crossing pedestrians, one from far side, one from nearside, synchronized or not. 
  

 
 



[L3.3] Protocol for the second test campaign 
 

 
 

 
 
 
 

 

p. 39 
 

2.5.2 Crossing Pedestrian with VUT preceded by a vehicle: 
The VUT follows an SOV (Secondary Other Vehicle) with a distance X, then a pedestrian (adult or child) 
crosses in front of the VUT. The distance between VUT and SOV depends on the ACC.  
 

  
 

2.5.3 Longitudinal Bicyclist with VUT preceded by a vehicle 
The VUT follows an SOV (Secondary Other Vehicle) with a distance to be defined in the same line as a 
bicycle.  At X meters (depending on ACC) of the target, the SOV avoids the bicycle. 
 
 
 
 
 
 
 

 

2.5.4 Crossing Pedestrian with two dummies, one stops before impact 
This scenario is similar as the CPNCO, a second pedestrian is added and starts to cross the VUT path 
before the stationary vehicle, then stops before the impact.  

 
 
 
 

1) SOV crosses when pedestrian is stationary 

2) Pedestrian crosses after SOV 

3) VUT reaches impact 
point at same time as 
pedestrian 

 

1) SOV avoids the bicycle   2) VUT reaches impact point 
at same time as bicycle 
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2.6 Summary of UTAC WP3 scenarios and tests built and validated as feasible & relevant to homol-
ogate AI-based vehicles: 
 
Finally, we can summarize our scenarios proposals with the five figures below related to  

- The 4 axes of new tests/protocols proposed to complete today vehicle homologation 
- Detail of the four axes proposed:  repeatability, robustness, anticipation and overfitting. 

 
We finally have built, tested and validated as feasible 18 new scenarios and protocols, and what is also 
new is to repeat tests for repeatability, robustness, or to build random parameters of the tests for overfitting 
tests. 
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2.7 metrics and requirements  
 
 
2.7.1 What are the today metrics and requirements for ADAS-AD homologation? 
 
Homologation and regulations have to be very simple to guarantee safety verifications in reasonable du-
ration and costs.  
 
So today tests to type approve one new function are generally very few, one to 10 most of time, and 20 to 
50 tests for the most complex functions like autonomous driving functions: AEBS, ALKS, ADS,  
On many scenarios and configurations (speed, loading of the vehicle...). 
 
With so few tests, metrics are also very simple, called KPI metrics. It is impossible to apply most WP1 
recommendations and metrics, because they supposed to have thousands of test results, which is maybe 
possible in WP2 with simulation but impossible in WP3 with physical tests; Also remember that in today 
ADAS and AD regulations no virtual tests are allowed to replace physical tests on closed tracks. It is in 
discussion in GRVA but still not decided. 
 
For example, most complex and recent intelligent functions like AEBS, ALKS, and ADS have the following 
“KPI” basic metrics, like for UN-ECE R152 AEBS regulation, the most deployed today:  
 

- Do for each scenario and parameters (speed, loading of the vehicle,) 2 tests.  
If there is one unsuccessful test, do it a third time. If the third test is ok, the scenario is successful 
 

- Do all tests for all categories of scenarios (scenarios with car target, pedestrian target, bicycle 
target,), the ratio of unsuccessful tests don’t have to be higher than  

o 10% for tests of car-to-car scenarios 
o 10% for tests of car to pedestrian scenarios  
o 20% for tests of car to bicycle scenarios.  

 
 
As PRISSMA WP1 explains, maybe one day complex metrics based on very many tests will be required 
to type approve AI-Based vehicles, but as explained previously, Today GRVA regulation group discussions 
are not very advanced and target to evaluate if existing or soon existing regulations could be sufficient to 
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verify AI-based vehicles safety:  Complex systems safety audit annexes , EU AI act, UN-ECE software 
update and cyber regulations (UN-ECE R155 & 156 regulations).  These regulations mainly require audits 
(of AI and software development, validations, production, reparations, data management, and safety as-
sessment for robustness and black box assessment) but not additional & standardized tests to evaluate 
vehicles on testing tracks. 
 
Therefore, our proposals of about 6 new scenarios to test and new metrics to verify AI-based vehicles/func-
tions (on repeatability, robustness, anticipation and overfitting) are simple “KPI” basic metrics, and coher-
ent with today homologation metrics.  
 
In addition, these proposals remain to be presented and discussed to the regulation groups with States 
and OEMs and that could take a long time! 
 
 
 
2.7.2 Repeatability metrics and requirements proposals 
 

As previously explained, we propose simple “KPI” basic metrics, coherent with today homologation 
metrics. 
  
First note that the state of the art for today repeatability is a difficult subject. Today performances 
references are quite rare and are changing every year! Euro NCAP has surely most information 
about that. Regularly tests campaigns are down to evaluate vehicles repeatability, but the results 
are not public and difficult to analyse. 
 
Here are some results for AEBS repeatability as explained in 2.2 chapter: 
 
Today, on a vehicle equipped with classic ADAS systems (ex: AEB), we note that the performances 
are not always repeatable. Here are some examples of repeatability results on ENCAP AEB (au-
tomated emergency breaking) scenarios: 

 
Pedestrian scenarios: 

 

 

 
 

Car to Car scenarios: 

 
 

Bicycle scenarios: 
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Metrics & requirements proposals: 
 

So, such results give references, and authorities and technical services must build and regularly 
update the references.  
 
The requirement is to: 

o Choose 1 to 3 scenarios, among our new scenarios proposals for repeatability, and coher-
ent with vehicle ODD/weak points. 

o Do these scenarios/protocols and verify during these tests that the AI-based vehicle perfor-
mance is still acceptable and not significantly lower compared to these references = aver-
age performance of vehicles with few or without AI. 

  
 
2.7.3 Robustness metrics and requirements proposals 
 

As previously explained, we propose simple “KPI” basic metrics, coherent with today homologation 
metrics. 
  
First note that the state of the art for today robustness is a difficult subject, because this is a really 
new subject: all regulations and Euro NCAP protocols are tested on good and nominal conditions, 
clear weather, dry tracks, no rain no dazzling sun, such more difficult conditions will arrive in these 
official tests but not before many years.  In Euro NCAP roadmaps is planned in 2026 for first tests 
and in 2029 for “ADAS-AD performances in adverse weather/lights rating”. 
 

 
 
 
So here again today performances references are quite rare and are changing every year! Some 
Institutions like AAA give regularly many tests’ results and information about that. 

 
 

Metrics & requirements proposals:  
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So, Authorities and technical services must build and regularly update performances references 
(as long there is no standard nor regulation). 
 
The requirement is to see during homologation tests if the AI-based vehicle performance is  

o Acceptable and not significantly lower compared to theses references = average perfor-
mance of vehicles with few or without AI. 

o Safe and coherent with manufacturer declarations related to vehicle notice and particularly 
the vehicle ODD (operational design domain) and limits:   

 
Choose 1 to 3 scenarios (among our new scenarios proposals for robustness) and 2 repetitions 
tests have to be done with some condition’s variations (Target aspect, weather aspects,) related 
to ODD limits / weak points identified during homologation safety audit). 

o If one of the 2 tests is KO, make a third test and verify it is OK 
 
If there are enough test results (through homologation tests),  

o verify global performance (< 10% KO for C2C & C2V, 20% for C2B)  
   (C2C: test Car to Car, C2P: test Car to Pedestrian, C2B: test Car to Bicycle) 
 
 
 
 
 
2.7.4 Anticipation metrics and requirements proposals 
 
As explained before in 1.3 and 2.7.1 chapters, Anticipation capability is not yet required in regulation and 
Euro NCAP is the precursor and incentive for new driving intelligent functions that will improve safety. 
These new functions, called Speed Limit Information Functions (SLIF) and Speed Limit Control Functions 
(SLC) by Euro NCAP, do arrive in the future Euro NCAP safety assessments, which are still unofficial and 
are being discussed in the Euro NCAP WGs (in which UTAC participates). 
 
A first step was down in Euro NCAP SAS 2023 protocol, in which Euro NCAP has introduced bonus points 
in its vehicle evaluations if such functions of driving can manage (with an alert to the driver or with an 
automated speed reduction) the situations in the figure below, called features:  
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Euro NCAP is well aware of nature/numbers/root causes of road accidents in the main European countries 
and is convinced on the well-known fact (and widely shared by the French authorities in charge of road 
safety, DSR and ONISER) that excessive speed is the main cause of road accidents. 

Euro NCAP will increase in 2026 protocols the challenging and rating of these intelligent speed control 
functions. 

So here again today performances references are very rare and will be changing every year. 
 
As previously explained, we propose simple “KPI” basic metrics, coherent with today homologation metrics. 

  
 
Metrics & requirements proposals:  
 
Authorities and technical services must build and regularly update performances references (as 
long there is no standard nor regulation). 
 
Choose 1 to 6 scenarios, among our new scenarios proposals for anticipation tests, and coherent 
with vehicle ODD and safety audit main points,  
 
Verify during these tests that the AI-based vehicle has the two required reactions:  

o an alert to the driver  
o a smooth braking instead of emergency braking (value of maximum deceleration require-

ment proposal: 5ms-2)( this is the limit value of an AEBS in UN-R152 regulation) 
 
 
 
 
 
2.7.5   Random test (overfitting) metrics and requirements proposals 
 
As previously explained in 2.7.1, today GRVA regulation group discussions are not very advanced and 
target to evaluate if existing or soon existing regulations could be sufficient to verify AI-based vehicles 
safety:  Complex systems safety audit annexes, EU AI act, UN-ECE software update and cyber regulations 
(UN-ECE R155 & 156 regulations).  These regulations mainly require audits (of AI and software develop-
ment, validations, production, reparations, data management, and safety assessment for robustness and 
black box assessment) but not additional & standardized tests to evaluate vehicles on testing tracks. 
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Overfitting tests and requirements are just an idea initially discussed in GRVA regulation group, but today 
neither Regulation nor Euro NCAP working groups work on such precise regulations with protocols and 
requirements for AI-based vehicles. 
 
So, we build proposals of scenarios, tests and requirement, with simple “KPI” basic metrics, coherent with 
today homologation metrics; And these proposals still remain to be presented and discussed to the regu-
lation groups with States and OEMs and that could take a long time! 
 

Metrics & requirements proposals:  
 

Authorities and technical services must build and regularly have to update references for perfor-
mances (as long there is no standard nor regulation). 
 
 
Choose 1 to 4 scenarios, among our new scenarios proposals for random tests, and coherent with 
vehicle ODD/weak points. 
 
Do these scenarios/protocols and verify during these tests that the AI-based vehicle performance 
is still acceptable and not significantly lower compared to these references = average performance 
of vehicles with few or without AI. 

 
 
2.7.6 Summary of metrics & requirements proposals:  
 
 
Metrics & Requirements proposals for AI-based vehicles safety verification/homologation: 
 

o Realize for type approval about 6 scenarios (among our 18 new scenario proposals), chosen 
on ODD limits & risks/weak points identified in safety homologation audit: 
 

o Repeatability tests: 1-3 scenario, 10 repetitions, verify performance is acceptable and not sig-
nificantly lower than average non-AI based vehicles (technical service or Euro NCAP have to 
build repeatability standards) 

o Robustness: 1-3 scenarios, 2 repetitions with some parameter variations (for example at ODD 
limits/weak points): speeds, angles, target aspect, weather aspects… If one of the two tests is 
KO, make a third test and verify it is OK. If data is available through homologation tests, verify 
global performance (<10% KO for C2C & C2V, 20% for C2B). Note C2C: test Car to Car, C2P: 
test Car to Pedestrian, C2B: test Car to Bicycle 

o Anticipation: 1-6 scenarios, verify alert to driver before a smooth breaking (instead of FCW & 
emergency breaking) (value of maximum deceleration requirement proposal: 5ms-2 = AEBS 
R152 definition) 

o Random tests (overfitting): 1-4 scenarios, verify performance is acceptable & not significantly 
lower than average non-AI based vehicles (technical service or Euro NCAP have to build ran-
dom tests standards) 

 
These metrics and requirements are related to our additional scenario’s proposal: We propose a maximum 
of six additional scenario, to complete existing scenarios/tests of regulations. This is described in the figure 
below:  
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2.8 Evaluation and process description  

 
2.8.1 Homologation process:  

As previously explained, we cannot add to existing homologation tests too much new scenarios and tests 
to evaluate and homologate AI-based vehicles, so the proposed process is described on figure below:  

 

1. Homologation safety audit     

 Identification of vehicle safety weak points / validations 

 Identification of vehicle ODD & vehicle limits 

 

2. Definition & realization of maximum 6 more homologation scenarios to 
test (or to verify) to safety & AI-potential weak points:  

 Virtual tests for dangerous/complex scenarios (verification done by the OEM) 

 Physical approval tests for ODD limits scenarios & critical scenarios (realization) 

 Open-roads physical approval tests real tests & verifications (realization) 

 The six new scenarios can be chosen among the 18 new scenarios/protocols de-
scribed in chapter 2.5 and summarized in chapter 2.6. 

 
 
 

3. Conclusion and type approval of the AI-Based vehicle 
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2.8.2 Evaluation description:  
 
We define the PASS/FAIL as:  

- PASS: The system reacted and allowed to avoid the collision 
- FAIL: The system didn’t react OR reacted too late to avoid the collision  

 
To go further in the analysis, we check the following values in the raw data (.txt file):  

- Maximum Speed (kph) of the vehicle during the test 
For that, we use the channel named “Speed (kph)” and we check the maximum during the test. 

 
- Minimum distance (m) between the vehicle and the Target  
This distance is 0 in case of Impact and in case of avoidance we use the channels named “Speed 
(kph)” and “Relative Longitudinal Distance (m)”.  
First, we find the index where the vehicle stops, it means when “Speed (kph)” reaches 0 kph.  
Then, we check the “Relative Longitudinal Distance (m)” value at the same index. 

 
- 2.8.2 Vehicle Impact Speed (kph) in case of impact 
This is the Vehicle Speed at the time of collision with the Target. We use the channels named “Speed 
(kph)” and “Relative Longitudinal Distance (m)”. 
First, we find the index of the collision, it means where “Relative Longitudinal Distance (m)” reaches 0 
m. 
Then, we check the “Speed (kph)” value at the same index. 

 
- Vehicle Speed (kph) at driver avoidance in case of it. 
This is the Vehicle Speed at the time of driver avoidance (steering or braking). Depending on the action, 
we can find the index of the avoidance (huge variation) using “Yaw Velocity (°/s)” or “Forward Accel-
eration (m/s²)”. 
Then we check the “Speed (kph)” value at the same index. 

 

Reference data system 
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Example of post-processing & evaluation for repeatability ( 10 tests of one scenario) :  
 

 
 
 
 
Example of post-processing & evaluation for robustness (variable parameters tests of one 
scenario) :  
 

 
 
 
Example of post-processing & evaluation for anticipation : 
 

 

 
 
 
Example of post-processing & evaluation for random test ( overfitting) : 
 

 

 
 
 
 

Data channels definitions 
 

T I M E   I N F O R M A T I O N S 

Channel names Unit
s Comments 

Time s Time starts in the path 
MP Time s GPS time of VUT 
MP Time Tracker 1 s GPS time of VRU or GST 

 
V U T   S P E C I F I C   I N F O R M A T I O N S 

Channel names Unit
s Comments 

Actual X (front axle) m X of the car (VUT) (at the bumper) 
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Actual Y (front axle) m Y of the car (VUT) (at the bumper) 
Speed kph Absolute speed of the car (VUT) 
Forward velocity m/s Forward speed of the car (VUT) 
Lateral velocity m/s Lateral speed of the car (VUT) 
Forward acceleration m/s² Forward acceleration of the car (VUT) 
Lateral acceleration m/s² Lateral acceleration of the car (VUT) 
Yaw angle ° Yaw angle of the car (VUT) 
Yaw velocity °/s Yaw velocity of the car (VUT) 
Yaw acceleration °/s² Yaw acceleration of the car (VUT) 

 
 

T A R G E T   S P E C I F I C   I N F O R M A T I O N S 

Channel names Unit
s Comments 

Head tracker refer-
ence X position m Position of the VRU on X axis 

Head tracker refer-
ence Y position m Position of the VRU on Y axis 

Head tracker forward 
velocity m/s Speed of the VRU on its path 

Head tracker forward 
acceleration m/s² Acceleration of the VRU on its path 

 
 

R E L A T I V E S   V U T / T A R G E T   S P E C I F I C   I N F O R M A T I O N S 

Channel names Unit
s Comments 

Time to Collision 
(longitudinal) s 

Remaining time before the VUT strikes the target, as-
suming that the VUT and the target would continue to 
travel with the speed it is travelling 

Relative longitudinal 
distance 
 

m Difference between the longitudinal positions of the ve-
hicle and the target 

Relative lateral dis-
tance 
 

m Difference between the lateral positions of the vehicle 
and the target 

Relative longitudinal 
velocity m/s Difference between the longitudinal speeds of the vehi-

cle and the target 
Relative lateral ve-
locity m/s Difference between the lateral speeds of the vehicle and 

the target 

Relative yaw ° Difference between the yaw angles of the vehicle and the 
target  
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3. TESTING ENVIRONMENT AND EQUIPEMENTS    

3.1 TARGETS 
 
The used targets for the previous scenario are those defined by the ISO 19206-2_2018 (Pe-
destrian) and the ISO 19206-4_2020 (Bicycle). For the Robustness scenarios, the targets will 
be adapted.  

3.1.1 ISO 19206-2_2018: 
Adult: 

 
 
Child: 

  

3.1.2 ISO 19206-4_2020:  Bicycle: 
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3.2 PROPULSION SYSTEMS 
 
The propulsion systems used are in accordance with the TB029 of ENCAP.  
 
 

   
 
 

3.3 VUT equipment: 

3.3.1 Motion Measurement 
 M O T I O N   P A C K   1 
  Manufacturer 

Oxford Technical Solutions (OxTS) 
 Unit model 

TO BE DEFINED 
 Sensors 

Accelerometers (Servo) / Gyros (MEMS) 
 Data output rate Coupling method 

100 Hz GNSS / INS 
  

 
   

 

3.3.2 Data Recording System 
 C O N T R O L L E R 

Global Vehicle Target 
(GVT)

Euro NCAP Pedestrian 
Target Adult (EPTa)

Euro NCAP Pedestrian 
Target Child (EPTc)

Euro NCAP 
Bicyclist Target 

(EBT)

Supplier ABD 4a 4a 4a

Product Soft Car 360 4activePA Adult 4activePA Child 4activeBS

Version
DRI Rev G
Feb 2020

v4v4 v3v3 v5v5

Supplier Product Version

ABD GST100
V1.0 

(P8503) & (P8328)
with car panel

ABD GST120
V1.0 

(P12218)

ABD SPT System SPT20/SPT20s

V 1.0
(P9226)

without extension

V 1.0
(P9226)

with extension

V 1.0
(P11000)

without extension

V 1.0
(P11000)

with extension

Euro NCAP Test Targets

ABD LaunchPad 80

ABD LaunchPad 50 &
Launchpad 60

Pr
op

ul
si

on
 S

ys
te

m
s
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  Manufacturer 
Antony Best Dynamics (ABD) 

 Unit model 
XR Omni 

 Sampling rate 
100 Hz 

 Analog input voltage A / D conversion 
± 10 V 16 bits 

  
 

   

3.3.3 HMI Analysis 
 V I D E O   V B O X 
  Manufacturer 

Racelogic 
 Unit model Frame rate 

  
   

  
   
   

 
 G O P R O 
  Manufacturer 

GoPro 
 Unit model Video resolution 

  
   

 
   

 
 
3.4 TESTING TRACKS  
 
UTAC different test tracks allow simulating different environments:  
 
TEQMO Highway:  
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TEQMO City:  

 
 
 
 
 
 
 
 
 
 
 
Road Circuit Monthléry (MTY):  
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4. ROADMAP FOR 2024 POC TESTS   

 
Our Need to verify/optimize our protocols/requirements are the following:  
 

 Repeatability: no Need, our 2023 proposals for scenarios/protocols/require-
ments are fully OK  
 

 Robustness:  verify/optimize our proposals for scenarios/protocols/require-
ments:  

Test variations of parameters (speed, angles, target aspect, weather) 
Test / optimize / complete our requirements proposals 

 
 Random tests: no Need, our 2023 proposals for scenarios/protocols/require-

ments are fully OK  
 

 Anticipation:  verify/optimize our proposals for scenarios/protocols/require-
ments:  

Test / optimize /complete our requirements proposals 
 
The NEXYAD vehicle is clearly the vehicle with the most capabilities and the most AI inside. 
In addition, like during the 2023 tests, NEXYAD Engineers will really help us to build / define 
and measure the most relevant requirements and metrics 
 
Therefore, we planed  

o One week of tests  
o With this NEXYAD ZOE intelligent vehicle,  
o On 22nd to 26th January 2024 in UTAC testing tracks 
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Chapter 3: INRIA POC “Using Augmented Reality for AI-
based ADAS certification (POC UAR)” 

 

1. Introduction 

1.1. Objectives of the document 

The objective of this document is to present the protocol and the different components of the 
second test campaign that will be conducted in the framework of the POC proposed by Inria 
and Transpolis within the PRISSMA project. The tests will be conducted over five days at the 
beginning of 2024 (early February) at the Transpolis testing site. 

1.2. Context 
The goal of this proof of concept is to demonstrate Inria autonomous platform (automated Re-
nault Zoe) to showcase the validation of its AI-based perception software stack using a sce-
nario-based approach where dynamic virtual obstacles are injected in the sensor data by 
INRIA’s Augmented Reality (AR) system. In particular, this AR framework includes a data fu-
sion methodology that allows augmentation of LiDAR sensor data in real time. In this way, 
every element of the testing scenarios can be either real or virtual, offering a smooth transition 
from simulation to real testing. Thus, this POC has also the objective to prove how augmented 
reality can be a powerful tool to easily enrich testing scenarios in controlled environments and 
so make the evaluation and validation process cheaper and safer. 
 

1.2.1. INRIA’s autonomous vehicle 

 
INRIA’s autonomous platform is an automated Renault Zoe equipped with several sensors for 
localization and perception. Steering, throttle and brake commands are automated and ena-
bling autonomous navigation through the embedded computer and the software navigation 
stack. Further description of the platform is provided in section 3.2. 
  

1.3. Presentation of the functions to evaluate 

1.3.1. CMCDOT 
The CMCDOT framework [1] is a broad perception system, based on Bayesian filtering of dy-
namic occupancy grids, allowing parallel estimation of occupancy probabilities for each cell of 
a grid, inference of velocities, collision risk prediction and dynamic object segmentation. From 
various heterogeneous sensor data, ground form is estimated, instantaneous occupancy grids 
are generated and filtered using hybrid sampling methods (classic occupancy grids for static 
parts, particle sets for parts dynamics), into a Bayesian unified programming formalism. Based 
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on this perception framework, navigation systems have been developed and integrated, allow-
ing path finding-and-following, dynamic obstacle avoidance, localization, thus automation of 
various mobile robots. Also included are communication tools, allowing data fusion from infra-
structure systems. The software is composed of ROS packages, which encapsulate the opti-
mized core system on GPU Nvidia (Cuda), allowing real-time application on embedded boards 
(Tegra X2). First developed in an automotive setting, it is now exploited in other areas of mobile 
robotics and are particularly suited to highly dynamic and uncertain environment management. 
Thanks to an important engineering support over the years (notably thanks to IRT Nanoelec), 
this software has grown to be a core research and development tool of the team, an important 
technology demonstration and transfer vector, through maintained experimental platforms 
(most notably the automated Zoe) and associated research contracts and software licensing 
with industrial partners. 
 

1.3.2. Augmented reality 
On the Gazebo simulator, the Inria CHROMA group has developed a virtual twin of its Renault 
Zoe experimental vehicle. This virtual twin generates the same outputs (sensors messages, 
localization) that the actual vehicle does, reacts to the same commands, and has a realistic 
kinematic and dynamic behavior. This allows testing software in Software-in-the-Loop and 
Hardware-in-the-Loop. 
The Inria CHROMA group has also developed an Augmented Reality framework [4] for testing 
and validation of software on the Renault Zoe experimental vehicle. This framework provides 
a flexible way to introduce any virtual element in real time in the data of the LiDAR sensors of 
the vehicle. Our Augmented Reality accurately handles all possible occlusions between real 
and virtual elements. The representability of tests scenes generated by the augmented reality 
framework has been experimentally proven. It is then possible to easily and safely place the 
whole vehicle and all its software, from perception to control, in hybrid but realistic test scenes. 
This new testing methodology is intended to be a bridge between Vehicle-in-the-Loop and real-
world testing. 
 

2. Assessment protocol 

2.1. Description of the function to be evaluated 

2.1.1. Perception module  
The perception module in Figure 1 relies on probabilistic occupancy grids and Bayesian fusion 
techniques to generate detailed and refined representations of occupancy and velocity. These 
representations can be effectively utilized in tasks such as planning, risk evaluation, and colli-
sion avoidance. 
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Figure 1: Overview of perception module: Generating detailed occupancy and velocity 
representations using probabilistic grids and Bayesian fusion for effective planning, 
risk evaluation, and collision avoidance. 
   
In this POC, the perception module is represented by the CMCDOT framework, developed by 
Inria, which is a comprehensive method for tracking occupancy in dense environments. This 
approach draws inspiration from the Bayesian occupancy filter framework, incorporating ab-
stract states and a conditional Monte Carlo technique to optimize velocity estimation and focus 
on relevant areas. The scene analysis encompasses static, dynamic, free, and unknown states, 
each associated with dedicated models. The method explicitly considers uncertainty and sen-
sor coverage. 
The CMCDOT modules takes the following inputs: 

  LiDAR pointcloud data 
 Observed occupancy grids or several grids from different sensors  
 Odometry and localization of the ego-vehicle 

As a result, the CMCDOT module generates the following output grids visualized in Figure 
2:Figure 4 
1) Instantaneous grid: Initially, a Bayesian model is defined for each sensor. By considering a 
specific sensor measurement, the sensor model calculates the probabilities of occupancy in 
the 2D space surrounding the robot. This results in instantaneously updated occupancy grids. 
2) Filtered occupancy grid: The instantaneous occupancy for each sensor modality is filtered 
in both time and space. The CMCDOT occupancy filter, utilizing a Bayesian update model, 
performs local occupancy filtering while also tracking occupancy changes using a Monte Carlo 
approach. These yields filtered occupancy grids and velocity grids.                 
3) Velocity grid: This grid visually represents stationary elements (shown in white) as well as 
dynamic obstacles (represented by various colors). The intensity of each color indicates the 
obstacle's speed, while the color itself signifies its direction of motion.  
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4) Prediction grid: This grid is an effective model used for predicting occupancy by incorporat-
ing essential input data, such as occupancy probabilities and estimated velocity in Figure 5. It 
projects each cell based on estimated velocity, enabling the representation of movement. To 
account for noise, cells are divided into particles with specific accelerations and angular veloc-
ities.  
Acting as a probabilistic distribution, the prediction grid provides insights into future occupan-
cies within a three-second time frame. It merges occupancy grids obtained from various sensor 
measurements, creating a unified representation that accumulates information over time. The 
velocity grid derived from LiDAR measurements is preserved as the most accurate estimation 
of motion.  

 

Figure 2: Instantaneous grid: Un-
known (red), static and dynamic 
occupancy (blue), free space 
(green). 

Figure 3: Filtered occupancy grid: 
Unknown (red), static occupancy 
(blue), dynamic occupancy 
(green), free space (black). 

Figure 4: Velocity grid: Static oc-
cupancy (white) and dynamic oc-
cupancy (varied color intensities). 
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Figure 5: Prediction grid: Predicts occupancy by projecting cells with velocity, incorpo-
rating noise, merging sensor data. Offers insights into future occupancies, integrates 
path planning and obstacle avoidance for comprehensive understanding of dynamic 
environments.  
 
In addition, the prediction grid enhances occupancy understanding by visualizing predictions 
over time. Static objects are represented in white, while moving objects are depicted with col-
ors based on their estimated time of arrival. To ensure conservative behavior near moving 
objects, a large uncertainty is introduced during the prediction process, resulting in the creation 
of clouds of predicted occupancy. This accounts for potential variations and uncertainties as-
sociated with object movement. 

2.1.2. Augmented reality 

Our AR system consists of the four following modules: 
 A virtual environment which contains a twin of the experimental vehicle 
 A synchronization module which updates the position and state of the virtual twin 
 A sensor emulation which generates outputs from the virtual sensors and integrates 

them in the actual sensors' outputs 
 A visualization that helps testers to understand the AR scene.  

 

 

Figure 6 proposes a schematic representation of the software framework. The periodic mes-
sages of the sensors of the real vehicle give rhythm to the virtual world. So, all modules must 
run in real time, their execution duration must be short compared to the period of the sensors. 
This is a heavy constraint on the design and implementation of the solution.  

                    

 
Figure 6: Augmented Reality (AR) framework.  

We firstly generate a virtual environment, which is anchored to a real-world position with a 
reference in GPS coordinates. Then, the virtual environment contains only a virtual twin of the 
vehicle under test and the virtual elements that we want to add in augmented reality. There is 
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no restriction on the virtual elements of the test scene. The scene can be as complex as re-
quired by the test and include any type of object; the only limits are the ones of the simulator. 
Apart from the virtual vehicle and the test elements, the virtual environment is empty. Our 
method does not need a background, a ground plane or any representation of the actual test 
site. This makes this method easy to deploy in a new place. 

 
The absolute position of the vehicle under test must be constantly estimated by an accurate 
localization system. The estimated position is used to set the position of the virtual twin of the 
vehicle under test in the virtual environment. This straightforward synchronization gives a great 
flexibility. The AR system can be deployed without any installation. The virtual twin of the ve-
hicle is equipped with a set of sensors that mimics the sensors of the actual vehicle. An accu-
rate, realistic and real-time emulation of the sensors is needed. Although the framework is 
generic, for this POC we focus on LiDAR sensors. The emulated LiDARs must return the de-
tection of the virtual objects under a point cloud format. The point clouds are then merged with 
those returned by each corresponding actual sensor. The merge process is a key component 
of the proposed AR framework: it must be real time despite the amount of data to process; it 
must consider a realistic sensor model; it must reproduce all occlusions between real and vir-
tual world. For each sensor, the merge produces a new point cloud that represents the AR 
perception. It can then be sent to the software of the vehicle under test in place of the actual 
sensor's point cloud. Thanks to this, the use of AR is seamless for the software under test. For 
more technical details on how the LiDAR virtual and real data are merged in real time see [4]. 

The virtual twin of the vehicle is also equipped with a set of cameras that mimics the 
ones of the actual vehicle. Thanks to the simulator, the virtual cameras return images 
of the virtual objects. These images are then merged with those of each corresponding 
camera. For each camera, this produces a new image that represents the AR perception. 
It provides the testers with a convenient insight of the AR scene. If using a photo-real-
istic simulator and a realistic image merge function, this visualization can be used as 
AR for perception with cameras. However, a simulator with approximate graphics and a 
simple merge procedure suffices for the purpose of visualization. 

 

2.2. Description of the scenarios or the evaluation database associated with the 
task 

 
In the context of AV validation, it is not possible to test all the possible interactions an AV will 
have with other road users. To reduce the size of the scenario database, it is necessary to 
identify and select critical scenarios that are the most relevant to test the safety of an AV. In 
this POC we demonstrate this by using the work from project Surca [2, 3] that studied accident 
reports and road user behavior to identify the scenarios expected to be more challenging to an 
AV. These scenarios should be where efforts are made for AV validation. The goal of this POC 
is not to completely test all these scenarios but to demonstrate the feasibility of this methodol-
ogy; therefore, we choose 4 scenarios that will be executed with Inria AV at Transpolis testing 
facility. 
 
The scenario database is the same for the two evaluated functions. For this POC, 4 test sce-
narios were selected from the scenario database of the project Surca. From these critical in-
teraction scenarios, we choose 3 scenarios involving vehicles only (Figure 9: and Figure 7:) [2] 
and 2 scenarios involving an AV and a pedestrian (Figure 8) [3].  
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Figure 7: A vehicle is coming from behind the AV much faster or the AV has to per-
form an emergency braking. The obstacle vehicle will not have time to react and may 
collide with the AV. 
 

   
Figure 8: A pedestrians cross the road at the same moment the AV passes, leading to 
a possible collision. In left scenario, the AV has a clear visibility of the pedestrian 
while, in the right scenario, the pedestrian is occluded by parked vehicles. 
 

     
Figure 9: Two-vehicle scenarios. In left scenario, two vehicles drive in the opposite 
lane of the AV, the further vehicle (in green) tries to overtake the vehicle in front of it 
(in blue) possibly leading to a collision with the AV. In the right scenario, the AV 
crosses an intersection at the same time as another vehicle refusing the right-of-way, 
possibly leading to collision.  
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2.3. Requirements, metrics and criteria to consider 

2.3.1. Augmented reality calibration 

Calibration of the augmented reality tool is essential, particularly because the virtual environ-
ment relies on the simulator coordinate system, while the real environment uses the geo-
graphic coordinate system. The calibration involves finding the transform from one coordinate 
system to the other, for example it is used to compute the localization of the ZOE in the virtual 
environment matching the real localization of the ZOE. For experiments conducted at the 
Transpolis facility, a calibration landmark is centered around the main intersection in the urban 
area. The manual calibration process involves driving the car to this landmark point and ad-
justing the parameters to match the virtual location of the landmark with the actual location.  

2.3.2. Ground truth of environment 
To evaluate our results, we generate ground truth occupancy grids for the perception module 
(CMCDOT) using a satellite image of Transpolis facility as shown in Figure 10. The Renault 
Zoé is located on the satellite image using its geolocation during the test scenarios. An ap-
proximation of ground truth occupancy grid, fitting the dimensions of the CMCDOT grids, is 
cropped from the satellite image around the vehicle. However, it only contains static objects 
and the environment. By using the augmented reality framework, all dynamic objects of the 
tests are virtual actors. They are controlled by the simulator, therefore their state (position, 
orientation, speed, footprint) is known for each moment of the test. They are geolocalized on 
the ground truth satellite image and their footprint is drawn on it. 
 

 
Figure 10: Satellite image of the Transpolis testing facility. 
 
In the same way, we used the AR framework to merge a real environment with dynamic virtual 
actors during the test scenario; we generated a corresponding ground truth by merging a static 
ground truth of Transpolis facility with the ground truth data of the actors from the simulator as 
shown in Figure 11 and Figure 12.  
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Figure 11: A bus approaches the ego-vehicle but stops and avoids collision. However, 
an occluded car from behind the approaching bus collides with the ego-vehicle. All dy-
namic objects in the scenario are virtual actors.  

                                 
Figure 12: The ego-vehicle applies emergency brakes and avoids collision with a fire 
truck. All dynamic objects in the scenario are virtual actors.  
 

2.3.3. Metrics 

2.3.3.1. Navigation-based evaluation metric for probabilistic occupancy 
grids 

In the context of autonomous driving, OGs are generated by a perception system based on 
raw sensor data and used for navigation tasks such as Automated Driving Systems (ADS), 
Advanced Driver-Assistance System (ADAS), and collision avoidance. Despite their im-
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portance and broad use in autonomous driving, most existing approaches to evaluate the reli-
ability of probabilistic OGs are based on general-purpose metrics derived from the computer 
vision literature. In [5], the authors proposed a new metric dedicated to probabilistic OGs that 
evaluates the similarity of two OGs: a Ground Truth (GT) of the environment and the inference 
of the environment made by the perception system. This metric is specifically designed to as-
sess the similarity between OGs by considering the behaviour of an ego-vehicle navigating 
through the grids. The main postulate being that if a navigation algorithm generates similar 
trajectories using two OGs, the two are alike for navigation purposes. 
The metric is computed using the following steps: 

1. For each OG, we simulate a navigation algorithm to generate a shortest-path tree, 
composed of all the shortest paths from the AV position to every cell of the OG (some 
examples of paths are drawn in red in Figure 13: Evaluation). 

2. Both OGs are transformed into cost grids using the cumulative costs of the paths from 
their respective shortest-path trees (e.g. the cost grids in Figure 13: Evaluation). 

3. An intermediate distortion grid is computed by performing the cell-wise absolute error 
between both cost grids (e.g. the distortion grid in Figure 13: Evaluation).  

4. The metric is evaluated by computing the MSE of the distortion grid weighed by the 
disjunctive probability of free occupancy on both grids (i.e. the probability of a cell to be 
free on either of the grids). 

 

          

 
Figure 13: Evaluation process of the metric from [5]. From left to right, first and sec-
ond images are the Ground Truth and its cost grid, third and fourth are the inference 
and its cost grid. Examples of paths are drawn in red on both cost grids. The fifth is 
the resulting distortion grid of the pixel-wise absolute error between both cost grids; it 
is also weighed by the disjunctive probability of free occupancy on the GT or the infer-
ence. The metric score is obtained by doing an MSE pooling the distortion grid, the ex-
ample scene metric score is 41, 47. The driving scene (ground truth and sensor data 
used to generate the inference) is taken from Nuscenes dataset; the ego-vehicle is lo-
cated at the center of the grids.  
 
Simulating and comparing navigation behaviour instead of doing cell-wise comparison directly 
on the OGs gives this metric relevant properties. It can evaluate topological errors; it measures 
how occupancy errors on the inference changes the cost of the paths and how it affects the 
global topology of the OG. It puts emphasis on cells that are most crossed by paths since their 
occupancy is incorporated in more costs. In other words, these cells are topologically more 
important for navigation (e.g. areas closer to ego vehicle or bottlenecks). Furthermore, this 
metric is well fitted to evaluate uncertainty: paths tend to avoid uncertainty whenever possible 
or cross it otherwise, but in both cases, the navigation cost is increased. 
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2.4. Description of the tests 
The tests are separated in two main parts: 1. execution of the scenarios and data recording; 
2. metrics evaluation and data analysis. 

2.4.1. Scenarios execution 
The five scenarios will all be executed in the urban area of Transpolis facility (the precise lo-
cations are still to be decided). The topology of the environment and the road will have to 
correspond to the pictogram describing the scenarios. For each scenario, predefined trajecto-
ries are computed for every actor (the ZOE and the obstacles), they must correspond to the 
trajectories described by the corresponding pictogram of the scenario. During a scenario exe-
cution, obstacle actors are controlled to precisely follow their trajectories without considering 
possible interactions with the surrounding environment. The ZOE is ordered to follow its tra-
jectory using its autonomous driving system and it should avoid possible collision with other 
actors. Obstacle actors’ trajectories can be considered deterministic among the repetitive ex-
ecution of a scenario, but the navigation stack of the ZOE is not deterministic. The behavior of 
the ZOE is expected to be different between two executions of the same scenario where ZOE’s 
trajectory may lead to obstacle avoidance, emergency breaking or collision. 
In combination with augmented reality, this POC will use real obstacles provided by Transpolis, 
called targets. Available targets at the facility are described in Section 3.3. It is not known now 
of this deliverable redaction which targets will be available. It is expected that the obstacle 
actors with trajectories possibly leading to a collision with the ZOE will be a real target. Other 
actors with less interactions or presenting a lower risk to the ZOE will be in augmented reality. 
This illustrates one of the possible ways augmented reality can enrich test scenarios: the actor 
with a critical interaction is a realistic obstacle while virtual “satellite” actors increase the com-
plexity of the interactions by creating occlusions or blocking evasive trajectories. This test also 
provide data to evaluate the impact of virtual or real obstacles on AV validation. 
Data will be recorded using the tool rosbag provided by the ROS framework. This tool allows 
to record timestamped ROS messages (messages sent between processes or for visualization 
on the ZOE) in bag file and then play the bag to publish the ROS messages in order and at 
corresponding timestamps, thus replaying the recorded scenario. The following data will be 
recorded: 

 Sensors: LiDARs, camera, IMU, odometer, GPS coordinates. 
 Scenario: obstacle trajectories, ZOE trajectory, scenario metadata. 
 Perception: occupancy grid, velocity grid, risk grid. 
 Navigation: global trajectory, local trajectory, throttle and acceleration commands. 

2.4.2. Results analysis 
Recorded data will be analyzed offline using the metric defined in Section 2.3.3. Two validation 
processes will be conducted in this POC: the CMCDOT and the augmented reality framework. 

2.4.2.1. CMCDOT 
Using the generated ground truths, we can use the metric introduced in [5] to assess the cor-
respondence between the perception module's inferences and the ground truth. While con-
ducting the experiments at Transpolis, we use the CMCDOT as perception module and all its 
occupancy grids are recorded, along with the necessary data for constructing the ground truth 
(obtained from the simulator). For each occupancy grid produced by the CMCDOT, we gener-
ate a corresponding ground truth with the same parameters as those applied to CMCDOT's 
occupancy grids as shown in Figure 11. Subsequently, we used the metric from [5] to evaluate 
the similarity between those grids. 
By performing this procedure on a significant number of scenarios we can statistically evaluate 
the perception performance within the scenario context (i.e. crossing of an intersection in an 
urban area). As discussed in Section 2.3.3.1, the metric is suitable for a validation process: it 
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assesses the similarity by considering the behavior of the AV navigating through the grids, 
effectively evaluating how closely driving using the perception grid aligns with driving using the 
ground truth. 

2.4.2.2. Augmented reality 
Augmented reality replaces real actors of a scenario with virtual counterparts with the risk that 
these simulated actors are less realistic. We propose to evaluate the similarity between sce-
narios executed using augmented reality and real actors by evaluating the similarity of percep-
tion behavior. Scenarios with real obstacles can be replayed with only virtual actors by using 
the real actor's localization from the ground truth data, therefore, each scenario execution has 
it augmented reality counterpart to be compared with. This way, the scenario executions are 
synchronized enough to pair at each time step CMCODT occupancy grids from the scenario 
executions (an occupancy with real actors and an occupancy grid with virtual actors). The grids 
similarity is measured using the metric describe in 2.3.3.1. Occupancy grids from the real ac-
tor's scenario can be seen as ground truth for the inferences from scenario with virtual actors. 
This method evaluates the impact of using augmented reality on the validation process itself. 
The results should be used to evaluate how augmented reality can be integrated in a more 
general validation framework. 

3. Presentation of environments and testing means 

3.1. Transpolis  
 
The tests are designed for Transpolis testing facility (Figure 14) and to be conducted in the 
City Area of the facility. It is a meticulously designed urban testing ground spanning 30 hec-
tares. It features an intricate network of streets covering 12 kilometers, including two prominent 
boulevards with six lanes each. The area is divided into four sections, each presenting a unique 
layout with intersections, crossroads, and parking slots. 

   
Figure 14: Transpolis, headquartered at Les Fromentaux, is a cutting-edge testing 
ground for future urban mobility, where vehicles and infrastructures undergo daily tri-
als with advanced equipment and technologies.   
 
To cater to diverse transportation needs, dedicated bus and cycle lanes have been incorpo-
rated. A ring road provides seamless access with three traffic lanes and four access lanes. 
The City Area boasts 40 real buildings, enabling connectivity testing in both line-of-sight and 
non-line-of-sight conditions. 
   The infrastructure is equipped with adjustable facilities like fiber optic cabinets, roving side-
walk configurations, EV charging stations, and a dynamic changing-message sign. Movable 



[L3.3] Protocol for the second test campaign 
 

p. 69 
 

signs, traffic lights with GLOSA services and roundabouts cater to multifaceted testing require-
ments. Road markings, including luminescent lanes, provide precise guidance. 
   The driving environments include varied surfaces, vegetation, and sloping terrain for com-
prehensive assessment. Spanning 7000 square meters, the City Area serves as a parking 
facility and event area for flexible usage. This technologically equipped urban proving ground 
displays a commitment to advancing urban mobility. 
 

3.2. Autonomous vehicle 

 
The tests will be conducted with the INRIA's Renault Zoé autonomous vehicle, shown in Figure 
15, which is equipped with a Velodyne HDL-64 on the top, 3 Ibeo Lux LiDARs on the front and 
1 on the back, Spectra SP90 RTK Dual antenna GNSS, Xsens IMU providing vehicle velocity 
and orientation, a stereo camera and 2 IDS cameras. Data from LiDARS are fused and syn-
chronized using the IBEO fusion box.  These sensors are used as inputs for the navigation 
stack, it is composed of three modules: localization, perception, and navigation. Localization 
integrates data from various sensors through a Kalman filter, mainly relying on the centimetric 
RTK GPS. The perception module utilizes probabilistic occupancy grids within the CMCDOT 
framework [1], which is a Bayesian occupancy filter inferring information on occupancy proba-
bilities, velocities, and collision risk with predicted obstacles. The navigation employs a model 
predictive control (MPC) with a predictive collision detector (PCD) to guide the vehicle collision 
freely through the environment. The MPC module forecasts the possible future trajectories of 
the vehicle from different command samples (throttle, brake and steering commands). The 
PCD module calculates the expected time to collision of each trajectory with perceived obsta-
cles by predicting their expected behaviors. Ultimately, the command sample minimizing the 
collision risk is selected and sent to the embedded car controllers to drive the vehicle. The 
navigation stack offers robust localization, perception, pathfinding and dynamic obstacle avoid-
ance that are well-suited for dynamic and unstructured environments. 
 

                                       
Figure 15: Renault Zoe testing platform. 
 

3.3. Target obstacles 

3.3.1. Pedestrian 
The 4activePA, the official Euro NCAP pedestrian target, meticulously designed to replicate 
human properties with unparalleled precision. This cutting-edge system comes in two variants, 
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featuring a 50% adult male and a 7-year-old child as shown in Figure 16, allowing for compre-
hensive ADAS testing scenarios. Compliant with ISO 19206-2, Euro NCAP, CNCAP, JNCAP, 
and other industry standards, the 4activePA sets the benchmark for accuracy and reliability. 

                                               
Figure 16: Target obstacle replica for pedestrian 4activePA-adult and 4activePA-child 
featuring 50% an adult male and a 7-year-old child. 

The 4activePA excels with its robust construction, enabling testing in challenging conditions 
and ensuring durability. Its modular system allows quick spare parts replacement, minimizing 
downtime. This target's realistic response to Radar, Lidar, Camera, and IR-Systems is vital for 
testing and validating Advanced Driver Assistance Systems. Offering options like synchronized 
articulation, combined with compatibility with 4activeSB or 4activeFB-small, the 4activePA is 
the most efficient solution for ADAS testing. Meticulous attention to detail ensures a compre-
hensive evaluation of pedestrian detection and collision avoidance systems. 
 

3.3.2. Cyclist 
The 4activeBS, the official Euro NCAP bicyclist target meticulously designed to represent a 
50% adult male on a standard average European utility bike as shown in Figure 17. This inno-
vative target is exceptionally lightweight with a soft structure to safeguard the Vehicle Under 
Test (VUT) from damage during testing. Complying with ISO 19206-4, Euro NCAP, UN-ECE, 
and other industry standards, the 4activeBS ensures realistic properties in size, shape, and 
rotating wheels for comprehensive ADAS testing scenarios. 

 

                     
Figure 17: The 4active-BS-adult and 4active-BS-child models are the target obstacle 
replica for cyclists. The replica features both models with equal proportions.   
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Designed for testing under varied conditions, the 4activeBS features a robust and modular 
system, enabling an easy and fast exchange of spare parts. It's realistic response to Radar, 
Lidar, Camera, and IR-Systems makes it an indispensable tool for validating Advanced Driver 
Assistance Systems. The 4activeBS offers additional options such as different frame colors, 
and synchronized articulation of pedaling and arm signs. When combined with the 4activeSB 
or the driverless robotic platform 4activeFB-small, the 4activeBS stands as the most efficient 
ADAS testing solution, providing versatility and accuracy in assessing bicyclist detection and 
collision avoidance systems. 

3.3.3. Scooter 
The 4activeMC as shown in Figure 18, the CNCAP E-Scooter target designed for the upcoming 
CNCAP 2021 ADAS tests, representing the characteristics of an average Chinese Electric 
Scooter. Aligned with category L3e-A1 standards set by UNECE, this target complies with 
ISO/PWI 19206-5 and CNCAP 2021, offering realistic properties in size, shape, and microdop-
pler features crucial for comprehensive ADAS testing. The 4activeMC's extremely low weight 
and soft structure prevent damage to the Vehicle Under Test (VUT), enabling testing under 
rough conditions. Its robust construction and modular system facilitate quick spare parts re-
placement, ensuring an efficient and adaptable testing solution. 
 

                                                                   
Figure 18: 4activeMC presents the e-scooter designed for the ADAS testing as an tar-
get obstacle. 
  
Combined with the driverless robotic platform 4activeFB-small, the 4activeMC emerges as the 
best and most efficient ADAS testing solution for electric scooters. Additional optional features 
include synchronized movement, side leaning, and active lighting, providing a customizable 
testing environment for a thorough evaluation of Radar, Lidar, Camera, and IR-Systems. The 
4activeMC is poised to play a pivotal role in advancing testing standards and ensuring the 
safety and efficacy of ADAS technologies in the dynamic landscape of electric scooters. 

3.3.4. Portable belt system 
The Soft Pedestrian Target (SPT) system shown in Figure 19, revolutionizes portable testing 
with its innovative belt propulsion mechanism. This system ensures precise and consistent 
replication of NCAP and custom-made test scenarios, offering unparalleled accuracy in evalu-
ating vehicle safety features. 



[L3.3] Protocol for the second test campaign 
 

 

 
Figure 19: The SPT system consists of a belt propulsion mechanism, ideal for testing 
soft target obstacles like pedestrians, cyclists and scooters.  
 
Utilizing a standard AB Dynamics controller and steering robot motor for the drive unit, the SPT 
system is seamlessly integrated with Robot Controller Software, shared across our diverse 
portfolio of track testing solutions. Customers have the flexibility to employ an existing steering 
robot as the drive motor or choose dedicated versions with built-in motors capable of reaching 
speeds up to 40 km/h. The SPT system's adaptability extends to its power options, accommo-
dating a 12V car battery for standard operation or a mains power pack for enhanced perfor-
mance, available in 115v and 230v versions. This versatility positions the SPT system as a 
dynamic and reliable solution for portable testing across various testing environments. 
  

4. Roadmap 
The main future steps of this POC are:  

 Trajectories generation. Prior to the testing week at Transpolis site, the ego-vehicle and 
obstacles trajectories will be generated based on the scenario pictograms. An execu-
tion location in the testing field must be found for each scenario. Based on the scenario 
location, a target trajectory will be pre-generated for the AV and controlled trajectories 
for the other scenario actors. 

 Experimental tests. During five days in early February (exact dates still to be decided) 
the five scenarios previously presented will be executed at Transpolis facility with the 
autonomous Zoé. Each scenario will be retreated several times to record a statistically 
adequate quantity of data. 

 Generation of the ground truth data. For every scenario, generation of the occupancy 
grid ground truth of the CMCDOT inference using the satellite image of Transpolis fa-
cility and the actors’ properties. 

 Data analysis with the perception metric. Occupancy grids inference generated by the 
CMCDOT will be compared to their matching ground truth using the metric described 
in section 2.3.3.1. The statistical evaluation of these results will be used for the valida-
tion of the CMCDOT and of Augmented Reality as a testing and validation tool. 
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Chapter 4: CEREMA and LNE POC : “Simulation Tools Vali-
dation for AI-based ADAS certification (POC STV)” 

 

1. Introduction 
1.1. POC objectives 

More and more intelligent systems on vehicles use AI (e.g., visual or mixed navigation, sign 
recognition, road tracking and obstacle detection). Certification up to SAE level 3 is now pos-
sible for vehicles featuring partially automated driving. The manufacturer must demonstrate 
that its vehicles ensure adequate safety conditions within their operational design domain 
(ODD), having conducted tests in diverse scenarios. This task concerns the first braking-re-
lated advanced driver assistance system (ADAS) that has been implemented as an ``Auto-
matic Emergency Braking'' (AEB). The qualification of these systems requires verification in all 
kinds of scenarios, including, for example, considering degraded weather conditions. For cost 
and safety reasons, these qualification tests cannot be carried out in real conditions, as some 
tests may present risks or have frequencies of occurrence too low to allow the collection of 
large series of data. For this reason, sensor simulation tools and degraded weather conditions 
(physical, numerical or hybrid) must be implemented. These simulation tools can be real (like 
in the PAVIN Fog and Rain platform), purely virtual (integrating sensor models, as in LEIA 1 
and with the Cerema fog model) or can combine the physical sensor with simulated inputs (as 
is done in LEIA 2). The purely virtual simulators can be physically based or empirical (mainly 
based on Beer-Lamber theory). The latter family of simulators is real-time but not the former. 
In the language of certification, which is now being established, we speak about X in the Loop 
(XiL) testing, with X representing the Software, the sensor (Hardware) or the entire Vehicle. In 
the HiL and ViL cases, we can imagine that the vehicle's real sensor is fooled by a screen 
system that makes the vehicle believe it's seeing things that don't exist. The advantage of not 
relying solely on software during simulation is that other disruptive elements can be considered 
during testing, such as sensor electronics, system response times, or vehicle dynamics in the 
case of ViL. These simulation tools need to be validated and qualified, as they may be used 
for certification. In particular, it is necessary to check these points:  

 What scenarios should be considered to guarantee the results obtained on AI-based 
algorithms in the context of certification? In other words, what are the minimum scenario 
combinations to guarantee a given level of error and uncertainty during evaluation?  
 The repeatability of an evaluation with the same tool: what is the uncertainty induced 
by the simulation tool on the evaluation?  
 The reproducibility of a test from one tool to another: what are the differences in results 
between the different simulation tools (real or numerical)?  

LNE and Cerema have different tools for AI systems evaluation at their disposal, that need to 
be qualified:  

 Cerema’s PAVIN Fog and Rain platform for producing artificial fog and rain.  
 Cerema’s K-HiL model that allows to add fog to real images in augmented reality 
mode.  
 LNE’s LEIA 1 simulator to create fully digitally simulated images.  
 LNE’s LEIA 2 to replay videos recorded and or fully simulated in front of a real camera, 
in order to address the HiL purpose.   

The aim of this document is to present the protocol that will be used to verify the various ob-
jectives mentioned above. This protocol should enable simulation tools to be compared with 
each other, and to characterize scenarios that enable repeatable evaluation with a known level 
of error.  
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1.2.  Context 
As it is not possible to deal with every type of function at once, we have chosen to concentrate 
on the pedestrian detection function. This function is a priority, since it guarantees the safety 
of Vulnerable Road Users (VRUs). It is also already approved for the AEB function. Our three 
objectives are as follows:  
First, how can we guarantee that we have tested a wide enough range of conditions? AI-based 
algorithms are black boxes, and it is, therefore, very difficult to find their boundary conditions. 
Indeed, the typology, position, and orientation of the pedestrian can influence the results of the 
algorithm. Similarly, the environment, disturbing objects, and occlusions can influence the de-
tection. Beyond these geometric issues, weather conditions also have strong impacts, e.g., 
illumination, camera glare, fog, rain, and snow. Interest in this issue is recent in the field of 
autonomous vehicles and is the subject of numerous studies, but at present, the works listed 
in the literature only present cases and not a global solution.   
Even if all the conditions required for successful validation have been identified, it is impossible 
to reproduce them all in real-world conditions. For this, one solution is to use numerical simu-
lation. Many numerical simulators dedicated to autonomous vehicles exist. Most offer variants 
regarding pedestrians, environments, or weather, but only a few are calibrated against real-
world conditions, to our knowledge. The second question is: how can we validate the realism 
and representativeness of a digital simulator? Will the behavior of artificial intelligence be the 
same in front of different simulators? To address more exhaustive scenarios, the data can be 
partially or totally simulated, so X-in-the-loop simulators appear to allow using augmented re-
ality mechanisms. These are simulation tools of this type that we propose to test in this protocol 
(K-HiL model and LEIA 1).  
Beyond numerical simulation, real simulation methods are used to simulate adverse weather 
conditions. This is the case with the PAVIN fog and rain platform, which can reproduce adverse 
weather conditions on demand. This platform is calibrated from a meteorological point of view 
(calibration of intensities, drop size, and velocity). A real physical test must be qualified from a 
repeatability point of view. In the same way, the repeatability of virtual simulators is closely 
linked to the determinism of the simulator algorithms. Several sources can affect the determin-
ism of the simulation, they can be classified into two categories, first are due to the algorithms 
of simulator itself such as randomness, and stochastic processes and the others are due to 
the hardware and operating system, which hosts the simulator such as floating-point arithmetic 
or parallelism and concurrency between processes. This is essential in the context of certifica-
tion tests, where test laboratories are often qualified and audited, making repeatability tests 
and uncertainty measurements mandatory. Can this type of platform guarantee the repeata-
bility of tests, as well as a standard deviation on the results obtained with AI?   
To answer these questions, this protocol introduces a new pedestrian database, focusing on 
weather (clear weather and fog) and an associated evaluation method of detection tools. That 
database comprises real data, gathered in clear weather and artificial fog conditions within the 
PAVIN fog and rain platform, and numerically simulated data (using the digital twin), executed 
in HiL mode, from a simplistic model prevalently used in most numerical simulators outlined in 
existing literature. Both real and simulated data are annotated with 2D pedestrian detection 
bounding boxes.  
 

1.3. Methodology overview 
 
The aim of the present study is to characterize and evaluate the protocols and simulation tools 
enabling AI algorithm certification, including degraded weather conditions (fog). The evaluation 
of the used proving AI-based algorithm is outside the scope of this study. The proposed method 
is therefore as follows. First, an AI-based algorithm, which is applied to intelligent vehicles and 
representative of the state of the art, is chosen. This algorithm will be used as a proving algo-
rithm for the qualification of the simulation tools. A metric applied to this algorithm will be cho-
sen. Then identical datasets will be prepared using the different simulation tools available. 
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These datasets will have to include adapted scenarios to evaluate the identified proving algo-
rithm. Indeed, they will include data in clear weather and foggy conditions, but also repeated 
scenarios to verify repeatability. Finally, the proving algorithm and the associated metric will 
be applied to all the datasets. A comparison of the scores obtained for each dataset will allow 
verifying reproducibility from one simulation tool to another. At the same time, this method will 
make it possible to discuss the repeatability of tests with a single simulation tool, and the min-
imum protocols to be put in place to guarantee error-free evaluation of pedestrian detectors. 
The following sections present in detail the protocol, the tests carried out and the databases 
obtained, the metrics implemented, and the simulation tools involved. 

2. Evaluation protocol 
2.1. Function to be assessed  

 
As already mentioned, there is a very wide variety of algorithms using AI for autonomous ve-
hicles. Then we have chosen to limit ourselves to the example of pedestrian detection. As a 
reminder, the aim of the present study is to characterize and evaluate the protocols and simu-
lation tools that are used for the certification, and not the pedestrian detection algorithm itself, 
which only serves as proving algorithm. 
Concerning the pedestrian detection algorithm, the third version of YOLO detection algorithm 
[12], which stands for "You Only Look Ones", was chosen in this analysis. It is indeed a very 
common algorithm in the literature on object detection. Moreover, it is very easy to handle. The 
library of objects available in this version contains 80 items. The algorithm requires two main 
parameters: the confidence threshold (a value between 0 and 1) of the labeling and the object 
to label in the images. Only the class "person" is labeled in this study and the confidence 
threshold chosen is explained in the following section. A frame can get multiple detections with 
different levels of confidence even though only one pedestrian is walking in the scene into our 
database. 
 

2.2. Database 
In this study, we want to compare the following simulation tools: the PAVIN Fog and Rain 
platform, the K-HiL fog model, the LEIA 1 fully digital simulator (digital twin), the LEIA 2 simu-
lator to better address HiL purpose. To this end, we propose to acquire the same data for these 
different simulation tools. We will then compare the results obtained in the different cases. We 
will also try to measure the uncertainty for some of them. 

 
Figure 21: Presentation of the protocol used to obtain the various databases to be com-
pared as part of the POC. 
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Figure 21 shows the different databases that will be compared. As will be described in Part 
2.4, each is a complete database containing pedestrians walking in a road scene. Our proving 
algorithm (AI pedestrian detector) will be applied on each of these databases. The aim is to 
compare whether the scores obtained on each of them are similar. 
The process used to obtain these different databases is complex and needs to be described 
in detail. Indeed, some of the simulation tools used enable real data to be augmented 
(Cerema’s K-HiL model), while others enable data to be replayed to add the Hardware in the 
Loop aspect (LNE’s LEIA 2). Figure 21 shows a schematic diagram of how each database is 
created.  
First of all, a first database is created in clear weather and foggy conditions on the PAVIN 
platform. To achieve this, a camera records real pedestrians making their way through a road 
scene (dark gray base). The PAVIN platform can reproduce artificial fog conditions on demand. 
It is described in greater detail in Part 3.1. The scenarios played out on the platform and the 
sensors used for testing are described in Part 2.4. After the actual tests, a database with real 
images acquired in clear weather and fog conditions is available (dark gray base). 
Next, fog is added to the real data acquired in clear weather using the K-HiL model (dark 
orange base). This model, described in more detail in Part 3.2, enables fog to be simulated 
digitally over an image acquired by a real camera. Once the model has been applied, a second 
database with digitally simulated fog is available. 
Thanks to a digital twin of the platform (3D model), the same scenarios are reproduced inde-
pendently in the LEIA 1 simulator (dark blue base). The LEIA 1 simulator is described in detail 
in section 3.3. It enables the same data to be created in a virtual world (full 3D simulation). 
This makes it possible to obtain a third database with clear weather and fog conditions. 
From these three simulation tools, one real database (dark gray), one SiL database (dark blue) 
and one HiL database (dark orange) are obtained. To better address HiL simulations, we use 
the LEIA 2 simulator, described in Part 3.4. This simulator enables us to replay a database in 
front of the real camera, in order to obtain images from the real camera, as if it had filmed the 
scene itself. This is important in the context of vehicle evaluation, as it enables the entire pro-
cessing chain to be included in the evaluations (sensor, electronics, cables, central processing 
unit, etc.). The LEIA 2 simulator is therefore used to replay the PAVIN, LEIA 1 and K-HiL 
databases (dark colors) in front of the camera, resulting in 3 new databases taking HiL into 
account (bright colors). 
In the end, there are 6 databases from various simulation tools to compare. Each of these six 
variants contains identical clear weather and fog conditions. These six variants are named and 
summarized in Table 1. In particular, the variants replayed in LEIA 2 have the same name with 
an *. 
Table 1 : Nomenclature and description of the databases used in the POC. 
Variant 
name Location / acquisition method Type Peds 

num. 
Total number of 
videos 

PAVIN 
A real camera records pedestrian on the 
PAVIN platform. The platform can repro-
duce clear weather or fog. 

Real 100 
3 weather conditions 
* 100 pedestrians * 2 
sequences = 600  

K-HiL 
Camera data from the PAVIN database 
(clear weather) is reused. Using the K-HiL 
simulator, digital fog is added to the images. 

HiL 100 
2 weather conditions 
* 100 pedestrians * 2 
sequences = 400 

LEIA 
The platform's digital twin is used to recre-
ate scenarios in an entirely virtual world, 
thanks to the LEIA 1 simulator. 

SiL 36 
3 weather conditions 
* 36 pedestrians * 2 
sequences = 216 

PAVIN* PAVIN database replay into LEIA 2. HiL 100 
3 weather conditions 
* 100 pedestrians * 2 
sequences = 600  
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K-HiL* K-HiL database replay into LEIA 2. HiL 100 
2 weather conditions 
* 100 pedestrians * 2 
sequences = 400 

LEIA* LEIA database replay into LEIA 2. HiL 36 
3 weather conditions 
* 36 pedestrians * 2 
sequences = 216 

 
Table 1 shows the nomenclature of each database. It also shows the volume of data in each 
database. As described in Part 2.4.2, the weather conditions chosen include clear weather, 
and two fog conditions (medium fog and dense fog). In addition, for each pedestrian/weather 
combination, the route was replayed and recorded twice, so that repeatability measurements 
could be made. As a result, a total of 2,432 video sequences are available. Each sequence 
lasts around one minute, so there are around 40 hours of real, partially or fully simulated videos 
in the final database. 
The first objective of the study is therefore to compare the similarity of the 6 variants. For this 
purpose, a metric is defined in the next section. The second objective of the study is to measure 
the repeatability and uncertainty of a pedestrian detector evaluation. To this end, each of the 
databases will be randomly split into sub-sections. The metric will then be applied to each part 
as shown in Figure 22. This will also be analyzed. The general structure of the tests has been 
described, the precise description of the tests carried out is given in section 2.4, while the 
presentation of the simulation tools used is proposed in section 3. The following section pre-
sents the metrics used for the evaluation. 

 
Figure 22: Method used to check repeatability and uncertainty. One of the variants is 
divided into subgroups, and then the score is measured on each subgroup. 
 

2.3. Requirements, metrics and criteria to consider 
As explained above, our approach to comparing and qualifying physical and numerical test 
equipment is based on analysis of the results obtained by a detection algorithm, rather than 
on analysis of the raw images themselves. To do so, it is, therefore, necessary to have a 
proving pedestrian detection algorithm (AI based), a database labeled with ground truth, and 
a typical evaluation metric dedicated for detection algorithms. In this paper, we have chosen 
to use the so-called AUC score. 
Concerning the pedestrian detection algorithm, the YOLO algorithms was chosen in this anal-
ysis. As a reminder, the objective is not the evaluation of the YOLO algorithm itself but to use 
a popular object detection algorithm, as proving algorithm, to evaluate the main characteristics 
of the database, and to compare numerical and physical artificial fogs. 
As an example, the different detections obtained by the YOLO algorithm, for different levels of 
confidence, from 0.3 to 1, on two images from the database, are presented in Figure 23. An 
image can obtain multiple detections with different levels of confidence even though only one 
pedestrian is walking in the scene in our database. The image on the left of figure 23 shows 
the 9 YOLO labels with two labels far from the pedestrian present in the scene, yet for one of 
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them a confidence value greater than 0.5. The image on the right shows labels well-centered 
on the pedestrian, but with a high variability of the confidence value ranging from less than 0.5 
to more than 0.9. 

  
Figure 23: Example of YOLO detections on two clear weather images with different pe-
destrians. Colors: Green is for confidence > 0.9, yellow is for 0.9 > confidence > 0.7, 
orange is for 0.7 > confidence > 0.5, Red is for 0.5 > confidence > 0.3. 
In object detection, a widely used metric to evaluate the validity of a detection is the intersection 
over union (i.e., IOU) between bounding boxes. The intersection is calculated following the 
figure 24. The higher the IOU, the better the algorithm's detection. 

 
Figure 24: Intersection over Union (IoU). a) The IoU is calculated by dividing the inter-
section of the two boxes by the union of the boxes: b) examples of three different IoU 
values for different box locations [13]. 
 
The precision--recall curve is then calculated based on the results of intersection over union 
values. The curve shows the trade-off between precision and recall for different confidence 
threshold values from the YOLO algorithm. Precision is the fraction of relevant instances 
among the retrieved instances. Recall is the fraction of relevant instances that were retrieved. 
Then, the AUC score is calculated. A large AUC value represents both high recall and high 
precision. A high precision value indicates a low false positive rate (good confidence value but 
no ground truth label), and a high recall value indicates a low false negative rate (low confi-
dence value but ground truth has a label). The AUC score is between 0 and 1. The higher the 
AUC score, the better the algorithm. 
The evaluation method and detection tools just presented are applied to the 6 databases at 
our disposal. Detailed characteristics of the test carried out to create each database are pre-
sented in the next section. 
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2.4. Description of tests 

2.4.1.  Sensors 
As described above, the aim is to use an AI-based pedestrian detector for cameras to validate 
simulation tools. The stereo camera ZED2i (See Figure 25) from StereoLab [14] has been 
chosen and purchased by Cerema for the data acquisition. Indeed, the latter will allow the 
testing of monocular detection and recognition algorithms (by taking only one channel) but also 
stereoscopic. This will allow proposing a database in agreement with the literature. Cerema 
will also make acquisitions in parallel with a thermal camera (Xenics). This will allow labeling 
the images of the ZED2i camera in dense fog conditions, thanks to a preliminary geometrical 
calibration. In fact, the pedestrian is almost invisible on the ZED camera in dense fog, which 
makes labelling very complicated. The different instruments were positioned at the beginning 
of the greenhouse (See Figure 28). Finally, meteorological conditions are recorded by the 
PAVIN platform's usual sensors. 

  
Figure 25 : StereoLab's ZED2i camera. 

2.4.2. Meteorological conditions 
The objective of the scenarios defined for this study is to collect videos containing pedestrians 
moving in a scene subjected to various weather conditions (clear weather and two types of fog) 
and seasons using clothing representative of summer or winter. 
Fog is characterized in meteorology by the Meteorological Optical Range (MOR), also called 
visibility, and noted as V (WorldMeteorologicalOrganization2009). MOR, expressed in meters, 
corresponds to the distance at which the human eye no longer perceives contrast on a cali-
brated white-and-black target. The smaller the MOR, the denser the fog. It is considered that 
there is the presence of fog for a MOR below 1000 m in meteorology (WorldMeteorologicalOr-
ganization2009) and below 400 m in road context (Afnor 1989). 
The three types of weather conditions chosen are: 
• Clear weather (CW): it allows to have a reference scene without disturbances due to 
the presence of fog. 
• Medium fog (MF): the visibility is of 23 m allowing to modify the general aspect of the 
objects of the scene by leaving detectable all the elements of the visible scene. 
• Heavy fog (HF): the visibility is of 10 m allowing elements of the background to disap-
pear for stereo camera but not for thermal camera. 
These MOR values were chosen to obtain critical fog conditions. Thus, it is certain that these 
conditions will challenge the proving detection algorithm. Subsequently, the scores obtained 
by the latter will drop down, which will allow us to check whether the scores are similar for 
physical fog and numerically simulated fog. Figure 26 shows an example of the images ob-
tained for the three weather conditions of the real data. 
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Figure 26: Three weather conditions for a daytime configuration of the scene with (from 
left to right): clear weather (CW), medium fog (MF), and dense fog (DF). 

2.4.3. Scene 
To recreate a realistic environment, an urban scene with different elements was created in the 
PAVIN Fog and Rain platform: a Renault Megane vehicle, trees, a wooden picnic table, differ-
ent traffic signs, ground marking strips, and orange traffic cones, as well as four calibrated 
targets (a large black and a large grey (50 x 50 cm), and a small white and a small black (30 x 
30 cm). A 3D model (digital twin) with all the elements of this scene is also available with the 
dataset. 

 
Figure 27: Daytime scene of the PAVIN platform for the PRISSMA tests. 
 
For each trial, the pedestrians follow the same path through the platform and repeat it twice, 
consecutively, to ensure repeatability. Following the different colored lines in Figure 28, the 
path allows the pedestrian to be presented from the front (paths 4 and 7), the back (path 1) 
and the side (path 2, path 3, path 5, and path 6), in relation to the camera position (the red star 
in Figure 28). In addition to walking at a moderate pace, the pedestrians also find themselves 
sitting on the bench at the picnic table. 

 
Figure 28: Path of the pedestrians during the tests following the colored lines and arrow 
directions. 
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2.4.4. Pedestrian 
The databases set up contain both real data and numerically simulated data. In this way, the 
pedestrians present in both types of databases are described successively. 
First, real pedestrians are described. To be representative of a wide variety of pedestrians, 
different characteristics have been made variable to form the batch of 100 different pedestrians 
(Figure 29) such as: 

 Clothing: 50% of the clothing is representative of summer weather and 50% of winter 
weather. 

 Accessories: a selection of pedestrians carry accessories with different sizes.  
 Gender: 60% of the pedestrians are male and 40% are female. 

To add a seasonality in the scene (summer/winter), the pedestrians have been dressed in 
clothes characteristic of high or low temperatures such as: hats, caps, shorts, pants, coats, ... 
and as much as possible, a variability of the color of the clothes has been respected (bright 
colors, dark or light colors). Wigs have also been used to increase the number of female pe-
destrians. Different sizes of accessories have been used in the tests. The objective is to have 
an impact on the overall silhouette of the pedestrian in an attempt to fool the detection algo-
rithm. Considering the accessories worn by the pedestrian is crucial to guarantee his safety. 
An object worn by the pedestrian that would not be detected by the detection algorithm of an 
autonomous vehicle could endanger the pedestrian. 
The data can be classified into four sub-lists: 

 Small: for small accessories, such as a small backpack, a helmet, a plant, etc. 
 Large: for large accessories, such as a large cardboard box, a snowboard, an open 

umbrella, etc. 
 No accessories: when the pedestrian is not wearing any accessory or the accessory 

does not alter the pedestrian's overall silhouette (e.g., a headlamp, a yellow fluorescent 
vest, a cell phone). 

 All: all pedestrians, regardless of the accessory sizes. 

Table 2 shows the distribution of the number of pedestrians by the accessory size category 
and a thumbnail of the 100 pedestrians in the PAVIN database is shown in Figure 29. 
 
Table 2 : Number of pedestrians per sub-list of accessory sizes. 

Accessory Size Number of Pedestrians 
Small 25 
Large 33 
No Accessories 42 
All 100 
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Figure 29: Thumbnail of the 100 pedestrians of the PAVIN database. 
 
 
On the simulation side (LEIA database), numerous pedestrians are also available. The 4DV 
library offer a wide choice of human in terms of gender, ethnicity, age and type of clothing. 
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Figure 30 summarizes the humans used in the simulation. The appearance of the human can 
also be modified to change the hair or clothing color. In 4DV each human can be set with 3 
appearances which means we have 36 different humans. 

 
Figure 30: Thumbnail of the 36 pedestrians in LEIA database. 

2.4.5. Labelling 
The labeling consists of tracing a 2D box containing the pedestrian and the accessory that he 
or she is carrying during the measurement, which clearly has an influence on the bounded box 
boundaries. The goal is to define the area that the vehicle should be able to detect and avoid. 
In the case of the LEIA database, labeling is automatic, as the images are fully numerically 
simulated. Conversely, in the case of the PAVIN database, manual labeling is required. 
The PAVIN database contains data from two cameras (visible stereoscopic and thermal). Im-
ages from the ZED 2I stereo camera were used to labelize the clear weather and medium fog 
images. The images from the dense fog test conditions were labeled using the thermal camera 
images. Indeed, as can be seen in Figure 31 the pedestrian is barely detectable on the right 
ZED 2I visible image when located at crosswalk level and even invisible on the left ZED 2I 
visible image when he is at the end of the platform. In both cases, the pedestrian is easily 
detectable on the thermal images. A geometric and temporal calibration is used to labelize the 
pedestrians on the images of the ZED 2I camera and the thermal camera, as shown in Figure 
31. 
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The protocol is therefore described in detail in this section. It is based on the following simula-
tion tools: the PAVIN Fog and Rain platform, the K-HiL fog model, the LEIA1 digital simulator 
and the LEIA2 HiL replay simulator. These various simulation tools are described in the next 
section. 

 
Figure 31. Examples of the field of view of the ZED 2I stereoscopic camera (top images) 
with a synchronized field of view of the thermal camera inside the red rectangles (bot-
tom images). 

3. Presentation of test environments and simulation tools 
3.1. Real Simulated Fog: PAVIN Fog and Rain Platform 

 
The PAVIN database is recorded in the PAVIN fog and rain platform [15]. It allows the produc-
tion of various and reproducible fog and rain conditions. The PAVIN fog and rain platform is a 
facility situated in Clermont-Ferrand (France). The platform dimensions are as follows: 30 m 
long, 5.5 m wide, and 2.20 m high. Its dimensions allow the reproduction of an urban scene, 
and, thanks to a removable greenhouse, it is also possible to reproduce day or night conditions 
on this platform [15]. Figure 32 shows a scheme of the platform. Only the “Day and Night area” 
on the upper part of Figure 32 has been used to create the urban scene. This part of the 
platform is 18 m long and approximately 8 m wide. 
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Figure 32: PAVIN fog and rain platform scheme. 
 

3.2. Numerically Simulated Fog: K-HiL Model 
The numerically simulated fog on a clear weather visible image is obtained by applying a loss 
of contrast. The most popular method to simulate fog is to use the visibility attenuation theory 
of Koschmieder, defined a century ago [16]. This theory makes it possible to determine the 
luminance of a black object on a sky background by an attenuation of the visibility due to the 
extinction of the medium between the object and the observer. According to the Koschmieder 
law, the visibility V (in m) is related to the extinction coefficient βext (in m-1), if we consider that 
the minimum contrast identifiable by an observer is 0.05 (i.e., 5% [17]). 

𝑉 =
−ln (0.05)

β௫௧
 

The transmittance of a pixel at position (x,y) in the scene is a relation between the distance dx,y 
from a target to the observer and the extinction coefficient βext of the medium (in m-1):  

𝑡௫,௬  = exp (−β௫௧𝑑௫,௬) 
Based on the attenuation law of Beer-Lambert, the object luminance Lx,y of a pixel (x,y) at a 
distance of dx,y with intrinsic luminance of L0;x,y and Ls, being the luminance of the air light, can 
be described by the following relation:  

𝐿௫,௬  = 𝐿;௫,௬ exp൫−β௫௧𝑑௫,௬൯ +  𝐿௦൫1 − exp൫−β௫௧𝑑௫,௬൯൯ 
The depth dx,y  from the observer to the target is used to obtain the right estimation of the 
transmission map, which makes it an important parameter for an accurate simulation of ad-
verse weather on camera images. The equation requires three main parameters: the MOR 
value (V), the background luminance (Ls), and the depth of objects in the images (dx,y). The 
depth can be extracted from the stereoscopic camera images. The visibility values depend on 
the artificial fog parameters from the tests. It was explained in section 2.4.2. Finally, the back-
ground luminance is considered as the mean luminance of 10% of the brightest pixels of the 
image [18].  
Figure 33 shows an example of an image acquired in clear weather (a.) with a pedestrian 
crossing the crosswalk, a depth image from the stereoscopic camera (c.), an image acquired 
with the same pedestrian characteristics under artificial fog conditions (b.), and an image on 
which the fog has been numerically simulated (d.). 
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Figure 33: Example of an image with clear weather (a.), real fog (b.), and numerically 
simulated fog (d.). The depth map is shown as an illustration of the stereoscopic outputs 
(c.). 
 

3.3. Fully numerical simulation: LEIA 1 
The simulation tests are performed by LNE using 4DVirtualiz (4DV), which is a digital twin 
software devoted to robotics and the automotive field. This simulator allows creating scenarios 
from scratch using the items included in the library of the simulator or by importing our 3D 
models of building and vegetable ... etc. In this work, we use the 3D model of the PAVIN 
produced by Cerema. This model is designed in SketchUp and should be converted to fbx 
format to be supported by 4DV. Here, Blender, a free tool, is used to achieve this task.  

 
Figure 34: PAVIN 3D model in Blender. 
Once the fbx file has been imported into the 4DV simulator (see figure 1), the scenario is 
configured by specifying the time of day (day or night), the weather conditions (clear or foggy), 
the humans (their appearance and their route), and the cameras used to retrieve images. Two 

a. c. 

b. d. 
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cameras are used here, the first being ZED2 to retrieve RGB images and a semantic camera 
to obtain the segmented images which are then used for the annotation step. 

 
Figure 35: PAVIN 3D model in 4DV. 
 
In 4DV simulator, the light of sun is simulated by directional light at infinity and the only param-
eter to set is the time of day in the 4DV by setting the simulator clock such as 12 pm for daytime 
and 8 pm for nighttime. 
The weather conditions can also be specified in the 4DV simulator; however the visual render-
ing of the fog is very poor as shown in figure 36. In fact, the fog intensity increases slowly with 
the distance and fog haze is practically non-existent. The fog intensity in 4DV simulator can be 
set only with one parameter by choosing two values “weak fog” or “strong fog”. The fog model 
is not described in detail in the simulator documentation but the 4DV simulator company in-
formed us that they use exponential squared fog that takes as an argument the distance from 
the viewpoint. In the literature, the exponential squared fog model depends on two parameters, 
which are the distance from the viewpoint and an arbitrary fog density that can range from 0.0 
to 1.0. If this last parameter is not set correctly, it can result in poor rendering. To overcome 
this problem, smoke is used in addition to fog to enhance the visual rendering as shown in 
figure 37. The smoke is set to zero speed, it does not move and there is no smoke ripple as 
shown in Figure. In this study, we define two smoke intensities to obtain weak and strong fog. 
In collaboration with Cerema, the smoke intensity and fog intensity values are set in such a 
way as to ensure visual acceptability. In particular, the smoke parameters have been set from 
0.1 to 0.8. The team then visually compared which smoke levels most closely resembled the 
image obtained by the ZED camera in the PAVIN platform for a given visibility level. In fine, 
the settings selected were as described in the following Table. 
 
Fog rendering Fog intensity in 4DV Smoke intensity in 4DV 
Medium fog weak fog 0.15 
Heavy fog strong fog 0.30 

Table 3: Fog and smoke intensities values 
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Figure 36: Original fog of 4DV. 

 
Figure 37: Fog using smoke of 4DV. 
4DV simulator includes ZED2i camera model, which is close to that used by Cerema for test 
campaigns. Some of ZED2 parameters can be set as focus, zoom and frequency. A semantic 
camera is also used to segment images retrieved by ZED2, facilitating the annotation process. 
The semantic camera is positioned as the same location as ZED2 and should have the same 
zoom and frequency configuration as the ZED2.  
4DV simulator offers automated test management, which means you specify the variable pa-
rameter in the scenario and let 4DV handle them automatically, for example, with 2 parameters 
of weather conditions (clear and foggy) and 2 parameters for time of day (daytime and 
nighttime), 4DV will combine all these parameters and execute 4 tests. 
Once the tests have been executed and images retrieved, the annotation process should be 
carried out to have the ground truth related to the position of the human in images. This ground 
truth will then be used to compare it with the output of the detection algorithm. 4DV includes 
tool to achieve this task by using the semantic images retrieved by semantic camera to output 
JSON file containing the bounding box of human detection for each single image. 
 

3.4. HiL replay simulation tool: LEIA 2 
 
To narrow the gap between simulation and physical tests, we propose to use "mixed tests". In 
this type of test, the physical device is evaluated using synthetic data presented in a physical 
manner. The LNE is currently developing a platform of mixed test called (LEIA 2). This platform 
consists of a conical projection screen installed and high-resolution images will be seamlessly 
projected, surrounding the tested system in a 300° virtual reality. For this project, a single high-
performance projector will be used on a flat projection surface in a dark room as shown in 
figure 38. This is not a problem as we are testing a single camera that does not cover a wide 
angle. 
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Figure 38:  Darkroom of mixed tests 
 
In this study, images retrieved from real simulated fog, numerically simulated fog and fully 
numerical simulation are projected onto the screen. To guarantee the high quality of recovered 
images and avoid any light disturbance, mixed tests are carried out in a darkroom. The tests 
are run automatically and manipulated using python scripts developed during this task. To 
illustrate, the figure X.X shows a hybrid test image. 
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Figure 39:  ZED2i image of hybrid test 
Once the mixed tests have been completed, the images obtained are annotated on the basis 
of the previous annotation according to the type of tests. For example, for the fully numerical 
simulation, the JSON file generated by the 4DV simulator during the simulation tests. To com-
pute the bounding box of mixed test images, the bounding box of the simulation test images 
are used. As shown in figure 39, the bounding box of the simulation test image has parameters, 
(𝐵1, 𝐵_ℎ, 𝐵_𝑤), and the idea is to calculate the new parameters (𝐵1ா, 𝐵_ℎா, 𝐵_𝑤ா) of the 
bounding box of the ZED image (see figure 40). To do this, we can use the following expression: 

ℎ௧ =
ℎா

ℎସ
 

𝑤௧ =
𝑤ா

𝑤ସ
 

𝐵_ℎா = 𝐵 ∗ ℎ௧ 
𝐵௪ೋಶವ = 𝐵_𝑤 ∗ 𝑤௧ 

Where 𝐵1ா = [𝑠ℎ𝑖𝑓𝑡_𝑤 + 𝐵1_𝑤 ∗ 𝑤௧,   𝑠ℎ𝑖𝑓𝑡_ℎ + 𝐵1_ℎ ∗ ℎ௧] and 𝐵1 = [𝐵1_𝑤, 𝐵1_ℎ]. 
As ZED2i camera retrieve the entire scene containing the 4DV image projection, including the 
black edge (𝑠ℎ𝑖𝑓𝑡_𝑤, 𝑠ℎ𝑖𝑓𝑡_ℎ), we need to remove this black edge from the ZED image to find 
the correct ZED image bounding box. 
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Figure 40: Bounding box on 4DV image 

 
Figure 40: Bounding box on ZED image 

4. Roadmap 
Table 3 shows the past and future roadmap for carrying out the analyses for the POC pre-
sented in this protocol. The work presented in this protocol represents a year and a half's work, 
with tasks ranging from manipulation to simulation and implementation of an AI-based algo-
rithm. The table is containing two columns, showing what was present in the first POC, and 
the added value of the second POC in terms of testing. POC 1 mainly enabled the PAVIN and 
LEIA1 databases to be set up, but labelling was incomplete. POC 2 enabled us to complete 
the labeling process, enabling us to carry out a full analysis of the database, and to add digitally 
simulated and replayed tests in LEIA 2 to take account of HiL aspects. The protocol defined in 
POC 1 has remained unchanged, so that the different simulation solutions can be compared. 
The results obtained following this protocol on POC 1 and POC 2 will be presented in deliver-
able D3.6. 
 
Table 4: Roadmap for the POC “STV”. 
Date Action POC1 POC2 
Sep-
tember 
2022 

Drafting the test protocol. x  

October 
2022 

Testing and recording of the PAVIN database in the PAVIN 
Fog and Rain platform. 

x  

October 
2022 - 
May 
2023 

Annotation x x 

Febru-
ary 
2023 

Replay of PAVIN base on LEIA 2 -> PAVIN*. x  

May 
2023 

Creation of the LEIA database thanks to simulation on 
LEIA1. 

x  

April 
2023 

Creating the K-HiL database with the K-Hil simulator.  x 

Sep-
tember 
2023 

Replaying the two new databases on LEIA 2 -> LEIA* and 
K-HiL*. 

 x 
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Novem-
ber 
2023 

Drafting of final analysis protocol (D3.3).  x 

Decem-
ber 
2023 

Application of YOLO and calculation of scores on all data-
bases. 

 x 

January 
– Febru-
ary 
2024 

Data and results analysis. x x 

March - 
April 
2024 

Drafting of final deliverable on results (D3.6).  x 
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Chapter 5: IGN and VALEO POC 

1. Introduction 

1.1. Document goal 
This document describes the test that will take place at the beginning of 2024 on the UTAC 
site at Montlhéry. 

The POC consists of a determination of a Valeo autonomous vehicle trajectography by an 
independent system designed by IGN. 

1.2. Presentation of functions to be assessed 
 

Ground system designed by IGN gives  trajectography positions of a vehicle at a frequency of 
10 Hz. These positions are associated with precision indicators. 

 

2. Evaluation protocol 
 

2.1. State of the art: possibly relevant standards 

 
 

EN 16803-1 

Space - Use of GNSS-based positioning for road Intel-
ligent Transport Systems (ITS) - Part 1: Definitions 
and system engineering procedures for the estab-
lishment and assessment of performances 

ISO/IEC 18305 
Information technology – Real time locating systems 
– Test and evaluation of localization and tracking 
systems 

 



[L3.3] Protocol for the second test campaign 
 

 
Figure 20 Generic architecture of a road ITS system (EN 16803-1) 

 

2.2. Performance characteristics & metrics and criteria to consider 
Performance of a localization system for AV can be assessed according to different character-
istics (according EN 16803-1 or the Required Navigation Performance from the International 
Civil Aviation Organization): 

- Accuracy 
- Integrity 
- Availability 
- Continuity 
- Timing performance (timestamp resolution, output latency, rate stability or time to 
first fix). 

 
For this work package/proof-of-concept, a focus will be done on the accuracy of the absolute 
position returned by the localization system. 
Such accuracy is defined as the " closeness of the agreement between the Positioning State es-
timated by the Positioning System and the truth" in "ISO 5725-1:1994: Accuracy (trueness 
and precision) of measurement methods and results; Part 1: General principles and defini-
tions". 
The other performance characteristics may be assessed in further steps. 
 
To quantify the accuracy, the EN 16803-1 provides the following inventory of metrics 
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2.3. Methods of post processing 
During the performance assessment test (on a test track), the localization system for AV under 
test and the ground truth system (infrastructure-based) are required to return both an absolute 
position in the same spatial reference frame with consistent timestamps. 
The following process is proposed to to analyze the accuracy of such a localization system un-
der test. 
 
Step 1: Coordinate transform 
Convert the geodetic coordinates (latitude/longitude/altitude) into a local tangent plane coor-
dates, such as ENU "east-north-up" (x/y/z) coordinates for example. 
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(source : documentation related to "Ford AV dataset") 

 
Step 2 : Calculate the positioning & heading error 
At each epoch, calculate the lateral and longitudinal error by comparing the "estimated" posi-
tion (returned by the system under test), and the "true position" returned by the ground truth 
system. 
The vertical error is not considered here. 
 
A possible method is illustrated below. 
At each epoch, the 2D position error (lateral & longitudinal) is calculated by projecting the 
"estimated" position on the axis of a (right-handed) reference frame, whose center and orien-
tation correspond to the true vehicle position & heading at that epoch.  

 
 
This method refers to the "along track" and "cross track" position accuracy metrics that was 
previously mentioned. Such method, by calculating the error at each epoch in comparison to 

[xG,yG]

[xE,yE]

θG

-θE

Linearized
Global Referential

x

y

εLAT

εLON

OUTPUTS:
εLON = D.cos(α) [in m]
εLAT = D.sin(α) [in m]
εHEADING = [in rad]

Where :
D =
α =  

INPUTS:

xE,yE : position x & y in « localized pose » file [in m]
xG,yG : position x & y in « ground truth » file [in m]
θE : transform from Quaternion to Euler of orientation 
x,y,z,w in « localized pose » file [in rad]
θG : transform from Quaternion to Euler of orientation 
x,y,z,w in « ground truth » file [in rad]

Vehicle-centered
referential

Calculation of 
position error
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the true vehicle trajectory, is considered as the most relevant for the automated driving use 
case (among all accuracy metrics listed before). 
  
The article from the aviation community "Assessing Trajectory Prediction Performance – 
Metrics Definition" (Mondolini et al., 2005) provides an explicite definition of such 
"along track" and "cross track" errors, that can be easily translated for the automotive 
industry. 

 

 
"Along-track error: Measures the difference in the position of the predicted location of 
the flight and the actual location of the flight, projected onto the actual course at the 
time of a specified event." 
"Cross-track error: Measures the difference in the position of the predicted location of 
the flight and the actual location of the flight, projected onto a vector perpendicular to 
the actual course at a specified event" 

 
Step 3 : Characterize the accuracy of the localization system for AV 
For both lateral & longitudinal errors, calculate the 50th, 75th and 95th percentiles of 
the cumulative distribution of errors. 
The EN 16803-1 indicates that the cumulative distribution function of a real-valued 
random variable X is the function given by: FX(x)=P(X≤x). 
 
An example of result is provided below (from the EN 16803-1 again). 
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The EN 16803-1 recommends to use such accuracy metrics rather than mean & stand-
ard deviation of the error distribution, that may not be relevant if the error distribution 
does not belong to a "well characterized family of statistical distributions such as 
Gaussian family of distributions". 
 
In comparison, the UN R144 regulation assesses the accuracy of AECS (Accident 
Emergency Call System) positioning system by using the horizontal position accuracy 
metrics, rather than the "along track" & "cross track" position accuracy metrics. 
The method to calculate the horizontal position accuracy according to UN R144 is pre-
sented below: 

 
Where: 

 

 
(same calculation of σL standard deviation for L (longitude) coordinate 
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Step 4 : Validate that the accuracy complies with system requirements 
The performance requirement will depend on the Automated Driving System manufac-
turer/supplier, and may be provided by the latter to validate that the localization sys-
tem for AV satisfies the target performance requirements. 
 

3. Presentation of environments and test means 
 

3.1. System presentation 
 

3.1.1. Objectives 
 

The UTAC POC measurement system is designed to estimate the trajectory of an autonomous 
vehicle moving around and next to a given roundabout at various speeds between 15 km/h 
and 50 km/h. 
The used method is independent of the vehicle navigation system and does not modify the 
vehicle except for some targets stuck to it. 

 
The expected trajectory is a set of positions and orientations of the vehicle body in spatial 
reference frame with a precise timing. These points should represent the position of the vehicle 
with a frequency of a few Hz and with a three-dimensional geometric precision of around 2 cm. 

 

3.1.2. Principles 
 

The proposed method is based on photogrammetric tracking of targets on the vehicle by 
stationnary cameras precisely positioned, oriented and synchronized. 

 

3.1.3. Constraints 
 

To be able to estimate the vehicle position and orientation at each epoch, at least 3 targets 
must be seen simultaneously at each epoch from at least 2 different positions. More are 
needed in order to be able to estimate the final precision. 
 
The targets on the acquired pictures must be large enough for automatic detection and 
identifier decoding, which implies that the physical targets must be relatively large, and the 
cameras concentrated around one roundabout, to have a maximum of usable pictures. 
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The system is not designed to be operational in rainy weather. Moreover, visibility conditions 
have to be sufficient. Thus, the acquisition must take place without thick fog and only during 
the day. 

3.1.4. Output 
 

The vehicle body positions and orientations are estimated in 3D with a precision for each value 
estimated. 
 
 
 

3.2. Sensors 
 

3.2.1. Cameras 
 

The cameras are industrial models, having: 
 sufficient resolution (around 16 Mpx) 
 sufficient maximum acquisition frequency (around 10 Hz) 
 fast Ethernet connection to transfer pictures 
 panchromatic sensor for better geometrical accuracy 
 possibility to save pictures without lossy compression 
 external triggering input 
 SDK for PC-camera communication 

For the planned POC, the selected model is BFS-PGE-161S7 from FLIR, a camera with a 16 
MP resolution sensor. 

 
 

 

Fig 40. BFS-PGE-161S7 cameras 
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One computer is used to configure and save the images of several cameras. Using a dedicated 
4 ports gigabit Ethernet PCI card, it is possible to reach 10 Hz acquisition with 3 cameras 
configured in lossless compressed mode per PC. 

A group, composed of one PC, several cameras and one GEOSTIX (c.f. 3.2.2.) is called 
an “acquisition pole”. Poles have no wire connection between each other, to simplify 
on-field setting across a road 

 

.  

Fig 41. One acquisition pole 

 

 

The PC software is developed using the camera constructor SDK. The acquisition process is 
as follows: 
 
     • Load settings_json file 
    • Create the data_path  “location_date_hours_minutes” 
    • Network config check 
    • Force the IP addressing of the cameras to have the same interface subnet. 
    • Launch the acquisition process: 
        ◦ Create 3 threads to start capturing images (three cameras): 

 • For each thread: 
1) display the device info 
2) init the camera 
3) set the packet size 
4) reset camera cycle time 
5) enable Chunkdata 
6) enable the image compression 
7) start camera acquisition: 
            ▪ set the acquisition mode 
            ▪ configure exposition time, trigger delay in camera settings 
            ▪ begin image acquisition 
            ▪ waiting for the synchronization pulse 

                • if synchronization: 
◦  capture an image 
◦  get chunkdata 
◦  if image is incomplete, reject it. 
◦  get width, height, timestamp, and if is compressed, get 

ratio, CRC 
◦ set file name and save the raw image. 
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◦ Save some image data info in a data structure, for future 
decompression. 

3.2.2. Timing 
 

Timing has two main objectives: 

 to have a good synchronization between all cameras (an order of magnitude better than 
exposure time) 

 to have a correct timing reference to be able to compare photogrammetric trajectory 
with other trajectories. 

 
GNSS timing is used to have a precise and universal time reference. It is quite difficult to 
synchronize many cameras without wiring them all together. We use GEOSTIX, GNSS sensors 
designed at IGN and industrialized by Geobsys. Those sensors are versatile via extensions. 
For camera synchronization, a new layer was developed to send captured signals precisely on 
sub-multiples of GNSS round seconds. Several GEOSTIX can be programmed to start 
triggering cameras at the same time to ensure that the pictures indexes of all cameras are 
consistent. GNSS times of triggering signals will be recorded for precise image timing. 

The cameras can be configured to add a delay between the trigger signal and the exposure. 
This is adjusted in coordination with exposure duration to make sure that the instant at the 
middle of exposure time is the same for all cameras, regardless of exposure duration. The 
actual delay had been precisely compared to the requested one, and its precision is better 
than 50 µs (corresponding to a 0.5 mm displacement of the car at 36 km/h, which is negligible 
in this experiment). 

 
The GEOSTIX modules also synchronize the computers real time clocks for information. 
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Fig 42. GEOSTIX GNSS receiver 

 

Image synchronization has been heavily tested to synchronization was validated: 
 multiple cameras on one computer with wired sync 
 cameras on different computers with GEOSTIX sync 
 camera trigger delay 

As a result, we selected the best camera data settings and maximal acquisition frequency and 
validated synchronization precision. 

 

3.2.3. Topometry 
 

Topometry have several objectives: 

1. get (stationnary) camera positions and orientations 

1. get relative positions of vehicle targets 

2. provide vehicle trajectography in a common spatial reference frame 

Device, observation figure are planned to meet the needs. 

 

3.2.3.1. Cameras positions and orientations 
 

The first objective is to compute an a priori solution for the optical center positions of all 12 
stationnary cameras. Cameras must be mounted on specially designed supports, as shown 
below (Fig 43a. and 43b.), to collocate the optical center with topometric reflectors center, 
which will make the topometric phase more efficient and accurate for the localization of camera 
centers (a few mm). 
 

  

 

Fig 43a. Camera support (left), 
8 mm objective 

 Fig 43b. Camera on its 
support (center) 

Fig 43c. Topometric reflector 
(right) 
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The second objective is to compute positions of Ground Control Points (GCP) for 
photogrammetric camera orientations. It is done by using 2 types of points: sphere and targets 
(Fig 44.). Natural points (road mark, road signs, etc.) can also be used depending on the test 
track configuration. 
 
The sphere has the advantage of being visible from all points of view, but it is more difficult to 
observe with a topographical instrument. An adapter allows replacing a sphere by a topometric 
reflector during measurements to determine accurately the sphere center. 
 
The target has the advantage of being automatically detected in the camera images. It is also 
very simple to determine in topometry. 

 
 

Fig 44. Sphere (left) and black/white target (right) 
 
 

The observations are angular and distance measurements with a total station (see Fig 49). 
Several stations are carried out around the points to determine. A least squares global 
adjustment of all these observations is led to compute coordinates and estimate precision 
with redundancy. 

 
Fig 45. Simulation of topometric observation figure at UTAC 
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The simulation (Fig 45.) allows us to ascertain that all points (camera positions included) of 
the UTAC POC will be known with a relative uncertainty between 0.4 mm and 1.0 mm. 

 

3.2.3.2. Relative position of vehicle targets 
 

During topometric observations, targets on the vehicle are measured and integrated to the 
global computation. A set of scans with static laser scanner (Fig 46a.) could be done and 
added to the data model to improve redundancy and reliability of the computation. 

 

 

Fig 46a. Laser scanner Leica RTC 360 LT Fig 46b. Visualization of laser scanner point 
clouds and position for the test in Valeo site 

 

The laser scanner model that will be used for the POC is a Laser Leica RTC 360 LT. The two 
main characteristics of this device are: 

• resolution: 3 mm at 10 m 

• precision: 1.9 mm at 10 m. 

 

For the acquisition, laser scanner positions will be as close as possible to the vehicle to be 
able to make 2 sides visible of the vehicle. Thus, the distance between the laser scanner 
station and visible targets on the vehicle will be between 1 and 5 m. So, the resolution at the 
distance will be between 0.3 mm and 1.5 mm. 

The precision at a distance between 1 and 5 m will be about 1.9 mm. Indeed, the precision 
decreases with the distance but there is a constant part and under 10 m, the constant part 
takes the top. 

Pointing precision, mainly due to resolution, and laser scanner precision combines into 
quadratic sum since they are independent. The final precision of a target measured in a laser 
scanner sub-frame is between 1.9 mm and 2.4 mm. 
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The precision is poorer than topometric precision. But it is still useful to use it for 3 reasons: 

• it improves reliability 

• it is possible to fix target indexing ambiguities at the office 

• any point visible on the vehicle can be determined at the office 

 

A vehicle target frame is extracted from the computation. We call this frame “rigid block”. 

It is needed for 3 purposes: 

 predict target positions for the target's detection second pass (see section 3.3.4.2.) 

 bring more redundancy of vehicle positions with pictures 

 access to the vehicle reference frame given by the positioning system of the vehicle. 

The vehicle frame is a set of target coordinates in a common reference frame. For example, 
the Table 5. below gives the target coordinates in an arbitrary local frame for the test at Valeo 
(Creteil). 

Point X Y Z Sig X Sig Y Sig Z 
XS02 0,2222 0,5486 0,4880 0,0002 0,0002 0,0004 

XS03 0,3739 0,5473 0,4861 0,0002 0,0002 0,0004 

M05 0,7274 0,5084 0,4868 0,0002 0,0002 0,0004 

XS00 1,1459 0,0474 0,7415 0,0002 0,0002 0,0004 

XS01 1,0875 -0,0273 0,8606 0,0002 0,0002 0,0004 

XL11 1,2441 -1,3519 0,2980 0,0002 0,0003 0,0004 

M04 1,1799 -2,1601 0,2995 0,0002 0,0003 0,0004 

L08 1,1236 -2,7217 0,2428 0,0002 0,0003 0,0004 

M06 1,2825 -0,0383 0,4210 0,0003 0,0003 0,0004 

M07 -0,3825 0,0385 0,4590 0,0002 0,0004 0,0004 

L09 -0,2162 -0,0738 0,8367 0,0002 0,0004 0,0004 

L07 -0,5699 -1,2769 0,3465 0,0002 0,0004 0,0004 

XL10 -0,6473 -2,0788 0,3013 0,0002 0,0004 0,0004 

L06 0,1440 -3,9106 0,5146 0,0006 0,0008 0,0004 
Table 5. Example of rigid block coordinates 

 

This rigid block is given with reliable accuracy indicators thanks to a very good knowledge of 
topometric observation content. 
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For the test on the Valeo site at Créteil, coordinates of targets on vehicle were determined with 
0.2 mm of uncertainty. This very good knowledge of targets' relative positions will improve the 
quality of the final trajectography by combining with images observations. 

 
 

3.2.3.3. Absolute reference 
 

Absolute positioning of the targets on the test track is performed with 4 GNSS receivers 
associated to geodetic antennas. All antennas must be calibrated to know its exact phase 
center position depending on the satellite position. 
 
Positions are computed with (network) post-processed static solutions, with permanent GNSS 
network (RGP) base stations located at less than 30 km. This provides an absolute precision 
of about 5 mm (resp. 10 mm) in planimetric (resp height) coordinates. 
 
The post processing is led with the scientific software Bernese to ensure mastering of 
precision. 

 
Fig 47. Illustration of baseline computation in Bernese for a GNSS point of the test in 

Valeo site 
 

GNSS very short baselines are then computed with Leica Infinity software. They are exported 
with compete covariance variance matrix. 

 
Then, the coordinates and GNSS baseline observations are integrated to the topographic 
computation to perform a simultaneous block adjustment with IGN Comp3D software. The 
optimum link between topometric and GNSS observations is done thanks to a simultaneous 
rigid observation device. 
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Fig 48. Rigid observation device 

Thus, GNSS coordinates of one GNSS point are integrated with constraints, with precision of 
GNSS computation, in topometric computation. These constraints determine the position of 
the figure. To make sure of this position, the 4 GNSS points will be constrained alternately and 
results will be compared. 
 
GNSS baselines as for them determine scale factor and orientation of the frame. The scale 
factor given by GNSS baselines is less precise than scale factor given by total station 
distancemeter. So, reference frame scale factor is given by the latter. 
 
Orientation in RGF93 reference frame given by GNSS baselines has a precision of about 
0.0010 gon according to simulation results. 
 
To improve reliability of this orientation and test new methods, we will use a gyrotheodolite (Fig 
49). Our model is a Gyromat 3000 coupled with a Leica total station TS16. 
 

 
Fig 49. Gyromat 3000 coupled with a total station Leica TS16 
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Azimuths given by  gyrotheodolite has a precision of about 0.0015 gon, i.e. less precise than 
GNSS baselines. But, this orientation is fully independent of GNSS baselines orientation, so it 
improves significantly orientation reliablity. 
 
Finally, according to simulations, absolute precision of points in RGF93 reference frame will 
be about 1 cm for the planned POC at UTAC. 
 

 
 

 

3.2.4. Car equipment 
 

The car is equipped with a set of two-dimensional targets (Fig 50). 

 

 

 

Fig 50. The 

candidate designs selected for the coded target 

 
 
 

3.3. Measurement system and results 
 

3.3.1. Calibration 
 

Calibration of cameras is done in two steps, with MicMac software, developed at IGN. 

 

3.3.1.1. Estimate the distortion of the optical lens 
 

Calibration is done separately for each pair of sensor/objective, on a textured calibration 
polygon. 
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Fig 51. Textured area for calibration (left) an bundle adjustment result (right) 

 

Calibration is performed by taking a set of images with various orientations (to ensure that the 
calibration is homogenous on the whole image, as illustrated on Fig 52). 

 

Typical residual value of calibration is at 0.70 px, which corresponds to a 0.013° angle with the 
8 mm objective (1 cm at 50 m) and 0.008° with the 12 mm objective (7 mm at 50 m). 
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Fig 52. 
Distribution of tie 

points in the 
calibration 
process. 
Brighter areas 

represent higher 
densities of tie 

points, 
therefore better 

estimation of 
lens 

distortions 

 

 

 

Tests have been performed to assess the duration of validity of a calibration. 
 

As illustrated below on Fig 53, calibration seems to be holding for at least a few days, with only 
a few 1/100th of pixels between on-the-fly calibration and using a pre-calibrated camera. 

 
 

 
 

 

Fig 53. Distorsion errors just after calibration (left), and a few hours later on the same 
day (right) 
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Fig 54. Number of days after calibration vs residual value of bundle adjustment on the 
same polygon (in px), revealing that calibration of cameras can easily be done up to 

one week before the experimentation 

All these tests enable to conclude that with the chosen model of camera, calibration need not 
be done on-site just before the experiment POC. In our case, it is planned to be done with 
one week before the experiment, which saves a lot of time for the POC set up. 

 

3.3.1.2. Estimate the position of optical center 
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Fig 55. Experimental set up to estimate optical center depth 

 

 

 

This is done also for each pair of camera sensor/lens. Optical axes are assumed to be 
coincidental with the cylindrical symmetry axis of cameras, which leaves only one parameter 
to be estimated: the depth of optical center position. 

 

Using a calibration polygon composed of 35 coded targets (topometric accuracy ~ 0.1 to 0.2 
mm on each axis), disposed on the 4 walls of a square room: camera is placed in the center, 
and is being rotated, taking picture in stop-and-go. For high accuracy, 100 pictures are 
captured but experimental comparisons showed that the solution almost converges with 8 
pictures (one in each 45° octant). 

 

Automatic target detection is performed on each frame, and orientation of the camera is 
performed with photogrammetric spatial resection for each captured image. Of course, this is 
done with pre-calibrated camera (see section 3.3.1.3 above). 
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If the optical center is co-located with the device rotation axis, all spatially resected centers 
coincide in a unique point (up to few 10ths of mm of error). This is of course not the case at 
first attempt with a new camera. In this case, a circle is fitted on the estimated centers (Fig 56), 
and the radius is an estimate of the distance between the optical center and the rotation axis 
of the device. A second loop of image capture enables confirming the position of the optical 
center. 

 
Fig 56. Fitted circle on estimated optical center positions (rotation center is depicted 

in red) and residual values 

 

With this method, an accurate position of the optical center (at most 1 mm) is estimated in 
about 5 minutes of experimentation. 

 

Different experiments revealed that (with the degree of accuracy needed) the position of the 
optical center does not significantly depend on the sensor, the aperture (see Fig 57 as an 
example) and the focus. 
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Fig 57. Depth of optical centers (on the optical axis, referenced to an arbitrary point) 
for different apertures 

 

It was tested also that optical center position does not depend on camera models either (Fig 
58). 

 

 
Fig 58. Optical center positions for 2 different cameras and 4 different experiments, 

revealing that determination is accurate, reproducible, and does not depend on 
individual camera models. 
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3.3.2. Positioning each element 
 

To choose positions of all items (cameras, targets on vehicle, black & white target and 
spheres), different parameters must be taken into account: 

 camera field of view. 

 image resolution of the vehicle depending on the distance between vehicle and 
camera. 

 

To design the observation topometric figure, estimate precision of different points, estimate 
observation time and topometric devices required, simulation must be done before the 
observation. 
 
 

3.3.3. Acquisition 
 

The main steps of the acquisition (after topometry) are: 

 set the correct exposure duration for each camera 

 set the starting time for GEOSTIX triggering signals 

 have the vehicle follow its trajectory 

 stop the acquisition 

 

The data can then be pre-processed: 

 decompress the pictures 

 register acquisition time from GEOSTIX into pictures 

 

3.3.4. Computation 
 

3.3.4.1. Topometry 
 

Topometry computation is done using Comp3D software, an IGN least squares adjustment 
software. 
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All observations described in this paragraph about topometry are included to this computation. 
Our data are point coordinates and associated precision in the French legal reference frame, 
RGF93. 

3.3.4.2. Target detection 
 

With a few images per second, and multiple cameras aiming at the vehicle, the number of 
targets to pinpoint on the images may be considerable (up to a thousand per second). Besides, 
for precise localization of the vehicle on each frame, it is important that the target pointing on 
images is done with a sub-pixel accuracy. This constraint does not allow for a manual detection 
of targets in any reasonable amount of time. 

 

For this reason, target design has been conceived in order to enable automatic 
detection and decoding of targets on a vehicle. This detection must be fast (at most a 
few seconds per image) and accurate enough to guarantee that bundle from the camera 
to each target is precise enough to reach a 2 cm accuracy at 50 m range. 

 

3.3.4.2.1. Algorithm design 
 

The main steps of the detection target algorithm are as follow: 

 

1) Preliminary filter: a set of three filters are applied to identify candidate pixel for target 
centers. These filters are designed to have high response on areas sharing similar properties 
with the butterfly pattern (binary, 180° symmetry and radial symmetry). They are fast and 
applied in a cascading strategy, enabling to eliminate the maximal number of false candidates 
on the first pass. At the end of this step, target center is usually known with at most 1-pixel 
error. 

 

2) Butterfly edge detection: on each candidate selected at step 1, a radial search and circular 
mean is performed to extract directions of the cross pattern of the butterfly. Note that, as 
distance to the target is not known beforehand, the expected size of target in the image is still 
unknown. Therefore, cross pattern directions are searched on a conservatively small area, and 
then may not be very accurate (a few degrees off in not uncommon). For this reason, step 2 
will be executed one more time when target size in image is accurately determined. 

 

3) Circular edge detection: cross pattern detected at step 2 is used to sample a set of radial 
semi-lines starting from the initial guess of target center position. Black to white transitions  are 
searched on each of this set of lines to extract the two circular edges of the butterfly (typically 
sampled with at least 10 to 20 pixels per edge). 
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4) Ellipse fitting: the projection of the circular edge of butterfly being an ellipse in the camera 
projective space, least squares ellipse fitting is used to estimate the full butterfly circular edge. 
Two strategies have been tested, depending on whether the ellipse is constrained on the initial 
guess of center. Experimentation has shown that constraining the center does not improve 
significantly the ellipse geometric quality. Therefore, it was decided to leave the center 
unconstrained, which in turn pays off in robustness since it saves one degree of freedom, 
which enables an unbiased comparison of the estimated ellipse center with its initial guess. 
The difference between initial guess center and ellipse center can be used as a proxy for target 
detection standard deviation (in pixels). Typical values of differences are below 0.5 pixels. 

 

5) Image rectification: knowing the elliptical projection of the butterfly circular edge is not 
enough to estimate the rectified images. At least 3 points need to be determined. This is done 
by computing the 4 intersections of cross pattern directions estimated at step 2 with the fitted 
ellipse. These 4 points are then used as input in the least squares adjustment of the affinity 
transformation between 3D space and image space. Note that for close target (with the 8 mm 
objectives, that means closer than 5 m), perspective deformation cannot be neglected, and 
affinity may not be sufficient, and should theoretically be replaced by an homography. While 
this option is still open, preliminary tests showed that on real test track, most (if not all) of 
detected target will be further than this 5 m critical limit, and in this case, 3-point affinity 
estimation seems more efficient as it leaves again 1 degree of freedom for robustness. 
Examples of rectified images are provided below (Fig 19 and 20). 

 

6) Target decoding: target bit positions are estimated by extrapolation (provided that target is 
flat enough).  Tolerance may be added to make up for (to some extent) the curvature of the 
vehicle. Experimental tests showed that up to approximately 1 m curvature radius is acceptable 
for correct decoding of the largest size (XL – 60 x 40 cm). Decoding is also made more robust 
with the help of an error detection code. Note that 10 bits are available for 15 targets. Since 
target codes should be invariant to 180° rotation, in fact only an effective number of 5 bits are 
available for the code, leaving 25 = 32 configurations. With 15 targets, this provides another 
security control to avoid false positive detections. 
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Fig 59. Example of rectification process for a circular pattern target. Bit decoding is 
searched on squared areas (black for bit ‘0’ – white background and white for bit ‘1’ – 

black background) 

 

 
 

 
Fig 60. Example of rectification process for a rectangular pattern target on a vehicle. 

Again, bit decoding is searched on squared areas (black for bit ‘0’ – white background 
and white for bit ‘1’ – black background). Tolerance is depicted by 3 searching 

positions for each bit (with 5% spacing) to offset partially the vehicle body curvature. 
The algorithm is design to perform detection under up to 60° angle in line of sight 
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7) Output: for each camera, each frame and each detected target, position (in pixel floating 
point values) and target code name are registered in an output file. An estimate of the standard 
deviation of center location is also provided in the file. 

 

 

3.3.4.2.2. Tests and results 
 

To date, detection capabilities have been tested: 
 
- by simulations, with a detection ratio of 80 % for targets with pixel size in the image 
over 15 px (size of the butterfly pattern) and with moderate incidence angle (below 45°) 
between target plane normal vector and line of sight from camera. This detection rate 
also includes the correct decoding of target. For the largest target model (XL size: 40 x 
60 cm), the butterfly is 32 cm wide: for cameras equipped with 8 mm lens (0.02° angle 
per pixel), this corresponds to 20 px. Hence this target should be detected and correctly 
decoded with a success rate of 80 % up to a theoretical maximum distance of 60 m for 
the 8 mm lens and a 95 m for the 12 mm lens.  All the other target detection performance 
can be assessed proportionally given the size of their butterfly pattern: 
 
 

Center Dimensions Number Distance* 

XL 40 x 60 cm 5 60 

L 30 x 45 cm 4 40 

M 22 x 33 cm 4 35 

S 22 x 22 cm 4 35 

XS 18 x 24 cm 4 25 

*Maximal theoretical distance to get a 80 % rate of detection and correct decoding with 
the 8 mm camera lens 

 
Table 6. Model, sizes, number and effective distance of detection/decoding of targets 

 
 
These distance values are to be considered in relation with the typical ranges on 
UTAC test track: 10 to 80 m range between cameras and vehicle. 
 
Based on simulation results, the accuracy of target center detection is constant for all 
targets above 20 pixels. The root mean square error between estimated and true center 
location is around 0.05 px. With 8 mm lens camera, this corresponds to an angle of 
0.001° (1 mm at 50 m range). 
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Fig 61. Detection + decoding rate (left) and center localization accuracy (right) 
 

The detection algorithm has been optimized and validated based on simulations (Fig 
62). Target are placed with random positions, sizes and orientations on a typical image, 
and noise is also introduced to simulate a real camera sensor. This method enables to 
get a real ground truth for target centers (in pixel coordinates), and to optimize the 
algorithms on many configurations. 
 
 

 
 

Fig 62. Left: simulation of (circular pattern) targets on an aerial image for target 
detection and recognition algorithm development, tuning and optimization. 

Right: simulation of sensor noise. 
 
The relevance of simulation has been confirmed with real experimentation showing 
approximately similar performances. 
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- with real experimentations, decoding of XL (40 x 60 cm) has been tested with a ratio 
of 90% within at least a 50 m range, for moderate angle of incidence (<45°) of targets 
respectively to the line of sight of the camera. Further test with ground control points 
showed that the target center localization accuracy is below 0.15 px (compared to 0.37 
px with manual detection). Using automatic detection of targets provided about 5 times 
more accurate 3D photogrammetric intersections (0.6 mm vs 3 mm error) on an 
experimentation conducted with ground control points calibration polygon. 
 
 

 
 

 
Fig 63. Comparison of distributions of manual (blue) and automatic (red) target 

detection errors on center localization (in pixels) 
 

 
Simulations on Valeo test track showed that on two camera objectives (8 and 12 mm), on 
average 81 % of visible targets are detected with 1.5% of false positive detections. All visible 
targets are detected on about 55% of images. 
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Fig 64. Detection rates for the two models of objectives: number of visible targets in 
blue; number of detected and correctly decoded targets in red 

This test has been conducted at 5.30 PM in winter (end of November), in challenging night 
conditions and with long exposition time (5000 us). Better performances are expected in 
nominal conditions. 

Camera-vehicle distance and target size seem to be fairly secondary criteria in detection (at 
least, up to around 50 m range). Curvature of the vehicle body and the angle of view (difficult 
beyond 60°) are the most important parameters affecting detection/decoding success rate. 

 

3.3.4.2.3. Detection strategy 
 

Detection will be executed iteratively, in a two-pass strategy. On the first pass, detection is 
performed with conservative parameters, to exclude as much as possible, the risk of false 
positive detection (requiring human intervention). With this mode, it is assumed that the strict 
minimum number of targets detected on each camera frame would be at least two on each 
side at more than 50 m and one on the back at a minimum of 35 m. Having 12 cameras 
disposed 2 sets of 2 common targets should be visible simultaneously on 2 times 2 pairs of 
cameras. This enables (with redundancy) to estimate an initial approximate position of 4 
targets, each of them being visible on 2 to 4 cameras. The 4 estimated targets can be used to 
compute a solution for the whole rigid block of 15 targets. Knowing very accurate positions and 
orientations of each target at each time step, non-detected target positions can be predicted 
on each frame. This will be used as a prior solution for a second pass of the target detection 
process. Two strategies are being considered: 

 (1) Detection pipeline is applied only on the predicted target positions. Target found on 
these locations are decoded and if the retrieved code is matching (with a tolerance of 1 or 2 in 
terms of Hamming distance), the newly detected target is added to the preliminary set detected 
at first pass. 

 (2) The full detection pipeline is applied on the whole image with much less 
conservative parameters (low tolerances on fitted curves, center coincidence, affinity residual 
values…). Any target found close within the estimated tolerance of a predicted target is 
decoded and compared to the expected code. If the codes are matching (again with a tolerance 
of 1 or 2 in terms of Hamming distance) the newly detected target is added to the preliminary 
set detected at first pass. 

Since it enables to crop the images and apply target detection only on candidate locations, the 
former is more efficient in terms of computation time. The latter is faster to develop and 
integrate in the full pipeline, as it need not modify the detection algorithm. 

In both the above strategies, targets detected at second pass can be underweighted, and 
integrated iteratively in the global least squares adjustment to avoid false observations. 

In any case, the system does not require that all targets be detected at every time step. A 
minimum of three targets is necessary; all other targets are used for increase in precision and 
robustness. Based on preliminary tests conducted at Valeo test track, it is assumed that 60 to 
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80% of visible targets will be detected at first pass. 80 to 90% of visible targets may be detected 
at the end of second pass. 

 

3.3.4.3. Trajectory computation 
 

3.3.4.3.1. Camera orientations 
 

Experimentation (at lab and on Valeo test track) showed that camera heat is causing a slight 
and progressive deformation in the camera support (about 10 times the order of magnitude 
of the camera accuracy). About 20 minutes are required before stabilization. A solution would 
be to burn about 30 minutes of data before having the vehicle run on the track. However, this 
duration is dependent on conditions and image frequency. 

 
 

Fig 65. Angular variations of camera line of sight with heating 

 

Besides, other elements may contribute to challenge the stability of cameras (wind, tensions 
on cables, tripod stability, etc.). See Fig 66 as an example. 

 

file:///C:/PRISSMA/WP3/livrable%203.3/Livrable_IGN_WP_3.3_version_finale.odt%23__RefHeading___Toc46054_2328759689
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Fig 66. Angular variations on camera line of sight with cable motions 

 

To overcome this aspect, camera is oriented on a frame-by-frame basis. Manual detection of 
Ground Control Points (GCPs) (spheres, non-coded target and natural points) is performed on 
the first (and possibly last) frame of the image sequence. 

At each time step, correlation is performed about manually detected targets to track the 
positions of GCPs on each frame. This will enable us to get the most accurate external 
orientation of cameras at each time step. 

Note that since the vehicle might be moving in front of spheres and non-coded targets, the 
minimal number of GCPs to get external orientation (or at least accurate enough external 
orientation) is not always fulfilled. In general, four GCPs are needed. In case only three GCPs 
are visible on an image, 6 observations are available, and 1 of the 7 unknown parameters must 
be known beforehand. This is done by constraining the optical center (3 parameters) of each 
camera on the position of the prism used during topometry step (see section 3.2.3). In this 
case, only 4 unknown parameters are left to be estimated with spatial resection, which could 
theoretically be done with only 2 visible GCPs. Moreover, even in the case where the critical 
number of 4 GCPs is reached in an image, prior knowledge of the optical center position will 
provide much better estimate of the external orientation. 

Since all detections would be performed based on the manual detections, it is important that 
these latter are performed with extreme precision. To what extent a manual detection of a 
sphere in a image can be done manually is still being investigated. 

 

 

3.3.4.3.2. Global adjustment 
 

IGN’s topometric computation software Comp3D is used for the global least-squares 
adjustment. 

For each epoch, this adjustment is performed with the following measurements: 

    • Ground targets georeferenced coordinates (from initial topometric computation) 

file:///C:/PRISSMA/WP3/livrable%203.3/Livrable_IGN_WP_3.3_version_finale.odt%23__RefHeading___Toc46054_2328759689
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    • Camera's center georeferenced approximate coordinates (from initial topometric 
computation) 

    • Coded targets coordinate in car frame (from initial topometric computation) 

    • Ground targets image coordinates (manually determined on the first epoch and then 
adjusted for every other epoch via correlation, as we know that their image displacement will 
be small) 

    • Car coded targets image coordinates (from automatic detection) 

 

Each of these values comes with its precision. 

 

The residuals of measurements are checked to detect any error, especially in coded targets 
identifiers. If the computation succeeds, the car sub-frame position and orientation is estimated. 
It can then be used to add the coded targets where id decoding failed to the computation to 
improve the final precision. 

 

At least three car targets must be seen to estimate the 6 degrees of freedom of the car. With 
the number of cameras and targets, there will be a good amount of redundancy when the car 
is in the tracking area. 

This redundancy will help to get a good estimation of the final precision. 

 

3.3.5. Simulation 
 

To be able to estimate the final trajectory precision and the best cameras and targets 
distribution, a simulation environment has been set up. A digital twin of the measurement 
area has been created within the 3D computer graphics software Blender, with: 

 they considered area re-created to scale from digital surface model and orthoimage 
 ground targets for cameras orientation with their expected accuracy (via a topometric 

simulation c.f. 2.3) 
 a 3D model of the considered vehicle (with its trajectory and speed) 
 camera characteristics (resolution, sensor size, focal length, focus distance, aperture, 

exposure time) 
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Fig 67. Simulation in Blender 

 

The Blender simulation helped to find optimal target size and coding characteristics: 
the renders demonstrated their size in the images and their deformations due to the 
body car curvatures. 

 

 

 

 

Fig 68. Targets repartition in simulation 
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Many cameras and targets distributions were tested. All the computation operations 
processes can be run: 

 images generation 
 targets detection 
 global adjustment 
 comparison with simulated truth 

 

 

Fig 69. Simulated picture 

 

For global adjustment, upper bound of uncertainty and random errors was added: 

 

• 1.5 px  to 3 px for ground targets detection (radial increase to simulate an imperfect 
lens calibration) 

 

• 2 mm for ground targets georeferenced coordinates 

 

• 2 mm for car targets in car frame 

 

This confirmed that the aimed precision is reachable with our method: 
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Fig 70. Simulation errors 

 

Inside the roundabout, errors compared to simulation truth are about 5 mm and confidence is 
coherent with errors. 

 
It also helped to choose an efficient organization, to limit the number of cameras and targets 
while having redundancy for precision and safety. 

 

 

3.3.6. Output data 
 

The photogrammetric process produces car sub-frame 3D position and orientation in a 
common georeferenced ground frame. The orientation part can be limited to heading to simplify 
trajectory comparison. 
 
Another trajectory is the direct positioning and heading given by the two GEOSTIX on the 
moving car. 
 



[L3.3] Protocol for the second test campaign 
 

As both trajectories are expressed in a common frame (GNSS georeferencing and timing), and 
accompanied with their respective accuracy, they can be compared and validated. 

The topometric process also provides different point coordinates and precisions that can be 
useful for analysis vehicle trajectography. 

• Vehicle coded targets and other details on car body coordinates can be used to 
transform trajectography in vehicle navigation system reference frame. This step will 
be done by Valeo. 

• RGF93 coordinates of all points measured in topometry will be provided with 
uncertainty. This can be useful to check if the HD map created by the vehicle before is 
correct by comparison between points coordinates in the vehicle point cloud with 
coordinates given by topometry. 

 

4. Roadmap 
 

 

Under the hypothesis of a final POC test between 22nd and 26th of January, the road 
map for IGN is composed of the following steps: 

[01] Processing Valeo POC dataset: three trajectories of 1 to 3 minutes and three cameras. 

[02] Purchase of 3D printing material and printing of 11 remaining camera supports 
(prism adaptors) 

[03] End of processing pipeline: based on the results provided by the Valeo POC dataset 

[04] Preliminary visit on UTAC test site 

[05] End of simulations: defining precise, optimal and final dispositions of targets on 
vehicle, cameras and GCPs on the test site. 

[06] Validation of timestamping of images 

[07] Synchronization (+ validation) between 2 poles, and validation of RJ45 and BNC 
cables 

[08] Purchase of RJ-45 and BNC cables for the 4 poles 

[09] Test and synchronization between four poles 

[10] Transfer from local internet network to Wi-Fi 

[11] Configuration of master pole to make easier on-site last minute adaptations (exposure 
time...) 

[12] Validation of complete synchronization system 

[13] Development of tools to improve ergonomic of acquisition system and be able to detect 
any problem of image capture during final POC 
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[14] Development of module for second pass of target detection on vehicle: for missing 
targets 

[15] Calibration of vertical offsets for prism/sphere adaptors 

[16] Development of a protocol for accurate « manual » acquisition of GCPs on first 
image on each camera sequence and validation of protocol accuracy 

[17] Development of a script for automatic detection of GCPs on all images of sequence 
(based on correlation and acquisition on initial image) 

[18] Final preparation POC at IGN for validation of accuracy (1/2 scale POC with 2 
poles and 2 cameras per pole): comparison of different strategies for trajectory 
computation and validation final method 

[19] Unit test of Gyro and test of measurement integration in Comp3D software 

[20] Logistic step: investigating solution to make the 4 poles easier to deal with on site 

[21] End of topometric step simulation: validation of accuracy of GCPs, camera positions 
and absolute georeferencing. Simulation will be also used as a « operation map » for 
topometric step 

[22] Calibration of Gyro from Guilands Park, 2 km North of IGN: 1/2 day before/after final 
POC 

[23] Calibration of 12 cameras: lens distortion and optical center dep 

[24] Final POC at UTAC 

[25] Processing UTAC POC dataset 

[26] Writing final deliverables 

 

# Task Time* 2023 2024 
 S51 S52 S01 S02 S03 S04 

[01] Processing Valeo POC dataset 5       

[02] Printing of 11 remaining camera 
supports 

1       

[03] End of processing pipeline 5       

[04] Preliminary visit on UTAC test site 1       

[05] End of photogrammetric 
simulations 

2       

[06] Validation of timestamping of 
images 

1       



[L3.3] Protocol for the second test campaign 
 

# Task Time* 2023 2024 
[07] Synchronization between 2 poles 1       

[08] Purchase of RJ-45 and BNC cables 0       

[09]  Test and synchronization between 
4 poles 

2       

[10] Transfer from local internet 
network to Wi-Fi 

1       

[11] Configuration of master pole 1       

[12] Validation of complete 
synchronization system 

2       

[13] Improve ergonomic of acquisition 
system 

2       

[14] Module for second-pass of target 
detection 

2       

[15] Calibration of vertical offsets 1       

[16] Protocol for « manual » acquisition 
of GCPs 

1       

[17] Script for automatic detection of 
GCPs 

2       

[18] Final POC at IGN for validation of 
accuracy 

3       

[19] Unit test of Gyro and adjustment 
integration 

2       

[20] Logistic step 1       

[21] End of topometric step simulation  1       

[22] Calibration of Gyro 1       

[23]  Calibration of 12 cameras 1       

[24] Final POC at UTAC 1       

[25] Processing UTAC POC dataset 10 Until 2 weeks before deadline 
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# Task Time* 2023 2024 
[26] Writing final deliverables 5 Until deadline 

* Estimated number of working days on the task 

 

Chapter 6:  TRANSPOLIS POC for WP3: Crossing a traffic 
light intersection. 
 

1. Introduction 
 
TRANSPOLIS participation was first based on two objectives: 

 To support INRIA trial needs to develop their technologies, 
 To apply PRISSMA methodologies on an autonomous shuttle POC.  

The work to achieve the first objective is going on as expected. However, the progress to reach 
the second objective was significantly delayed due to the lack of an AI brick in the autonomous 
shuttle for conducting the tests. Moreover, TRANSPOLIS has invested more time than ex-
pected on the requirements and scenario generation working group of WP1.  
 
As a result, TRANSPOLIS decided to set-up a late POC with a reduced scope. This POC fo-
cuses on the requirements, safety analyses and set-up of validation plans of an automated shuttle 
crossing an intersection equipped with traffic lights. This POC shall produce results for the 
WP3 and WP5.  
TRANSPOLIS considers this work within PRISSMA project as a first step toward the valida-
tion and type-approval of this kind of system.  
 

2. Framework 
For an automated shuttle or any L4 automated vehicle, the ability to cross safely an intersection 
equipped with traffic lights is an important requirement to allow deployments in urban areas.  
This work does not aim at defining a full ODD and requirements of a vehicle or an intersection. 
The objectives are to: 

 Focus on the validation work of the full system of vehicle + intersection (including AIs), 
 To analyse the type-approval and safety demonstration legal background for this system 

of systems, 
 To define tests scenarios, 
 To specify test equipment and procedures.  

This document presents only a first version of this work that may evolve and be updated in the 
deliverable L3.6. TRANSPOLIS goals in PRISSMA project is not to validate a system but to 
develop test protocols and methods. Consequently, the tests that will be carried out in the 
task3.4 (following this first step) will evaluate test methods. 
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3. Legal background 
 
In Europe, vehicle or vehicle subsystems shall be type-approved by an approval authority of 
one of the State Member to be marketed. The verification and type-approval tests are carried 
out by a technical service. The European regulation 2018/858 [6] defines the type-approval 
functioning for the main types of vehicles.  
The regulation for Automated Driving System (ADS) is the regulation 2022/1426 [7]. It means 
that the vehicle manufacturer shall present a documentation and a system to be evaluated by a 
technical service to be type-approved according to this regulation.  
The documentation shall present all the safety analyses, requirements, and validations leaded 
by the manufacturer of the ADS.  
It shall include the definition of the ODD. If the crossing of an intersection using a V2X system 
is included in the ODD, it means that the vehicle manufacturer will impose requirements on 
road equipment, outside of the vehicle. The documentation shall specify clearly the remote re-
quirements expected for the road equipment.  
Manufacturer documentation shall present also all the tests run to validate the ADS of the ve-
hicle working with the specified road equipment.  
ADS are usually systems of systems; as a consequence, all components of the ADS, including 
the AI bricks, shall have been validated and the documentation of the manufacturer shall present 
this work. 
It is important to notice that the regulation 2022/1426 [7] is strongly related to the NATM def-
inition of UNECE WP29 [8]. The NATM defines test pillars: a/ scenarios, b/ virtual testing, c/ 
track testing, d/ real world testing, e/ Audit, f/ In service monitoring as shown on 72.  
However, the definition of which test shall be carried out in simulation and which test on track 
is not yet clear and it is one of the technical problems PRISSMA project is working on. This 
POC will also help to progress on this subject by studying a concrete case.  
 

 
Figure 71: Relationship between NATM pillars and safety requirements [8] 



[L3.3] Protocol for the second test campaign 
 

p. 135 
 

 
In France, to deploy an automated shuttle service, the decree n°2021-873 [9] defines the stages 
of safety demonstrations and missions on OQA (qualified bodies).  
The deployment on an automated shuttle service is treated as a system: an Automated Road 
Transport System (ARTS), since it includes remote equipment on the pathway (including the 
RSU and traffic light controller), a safety management system, a supervision system, etc.  
PRISSMA deliverable 1.5 [10] presents these stages in paragraph 3.1.3.  
For an ARTS deployment, the validation of the functioning of the shuttle crossing an intersec-
tion controlled with traffic lights will be presented in the documentations: DCST, DPS and DS 
and reviewed by OQAs from the following domains:  

1. Functional safety of embedded systems 
2. Functional safety of connectivity and positioning devices: for the V2X system (RSU) 
3. Cybersecurity  
4. Infrastructures and road equipment safety: for the traffic light controller 
5. Safety of road behaviour of the vehicles: for the vehicle strategies  
7. Global evaluation of the system safety. 

The work of deployment of an ARTS also implies some validation tests that shall be presented 
in the different documentations listed above.  
 
The test scenarios defined in this document can be used for type-approval or ARTS validation 
according to the stage of the project.  

4. POC specification 
 
This POC focuses on traffic light intersections and the ability of an L4 automated vehicle to 
cross safety such an intersection with a “going straight” manoeuvre.  
 
4.1 Global functioning description 
4.1.1 @the vehicle level 
 
The vehicle is equipped with an On-Board Unit (OBU) receiving and emitting standardized 
ITS-G5 messages:  

 Emitted messages: CAM 
 Received messages: SPATEM  

The vehicle is equipped with a vision-based system able to detect the position and the state of 
a traffic light. This system is made of a camera and an AI brick to detect the position and the 
state of the traffic light.  
To the experiments, an Openpilot and comma 3X system will be implemented.  
A fusion of the information from the OBU and the camera ensure the ability of the vehicle to 
detect the traffic light status.  
A decision algorithm can also be implemented using some AI. This brick will not be developed 
during the project. However, a work to initiate its specifications and validation could be further 
develop in the next deliverable.  
 
The camera is also used to detect other vehicles on the way. The path of the vehicle is always 
the same and go straight through the intersection.  
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4.1.2 @the intersection level 
 
For the purpose of this reduced POC, this work will concentrate on a cross intersection and the 
automated vehicle manoeuvre will be to cross straight the intersection.  
The intersection is equipped with:  

 A Traffic Light Controller (TLC) of Lacroix city brand – this controller is coded in the 
DIASER language and can be programmed using Lacroix city WinTraffy software.  

 A roadside unit sending standardized ITS-G5 messages:  
o SPATEM: for traffic light phases and timing 
o MAPEM: for traffic lights locations 

 Classical French Road markings with longitudinal street markings and pedestrian cross-
ways. Figure 72 presents the configuration of the intersection.  

 
The TLC is set with a fix and repetitive cycle.  
 
4.2 Environmental conditions 

 The shuttle shall operate from 6:00 am to 22:00 PM – all year long.  
 The shuttle shall work under heavy run. 
 The shuttle shall not work in foggy situation when the visibility is reduced to 20m. 
 The shuttle shall not work under snow or on icy road. 

 

 
Figure 721 : Intersection configuration in TRANSPOLIS city area C. Scale: Building 150 is 50m long. 

RSU: roadside unit. TLC: Traffic light controller 
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5. Test scenarios 
5.1 Introduction 
 
Tests scenarios can be defined according to requirements, ODD, safety analyses, functional 
safety analyses, accidentology databases, etc. Scenario generation is further presented in 
PRISSMA L1.5 [10]. This deliverable also presents the project work about the requirements.  
According to the requirements and the stage of the project, tests can be carried out in simulation, 
on tracks or on open roads. The scenarios defined here are mainly focused on what can be done 
on tracks.  
Following the work in WP1, the test scenario list given below is defined based on requirements 
and ODD definition. The method presented in Annex A of deliverable L1.5 [10] for nominal 
scenarios based on the ODD is applied. Figure 73 shows the three stages of this method.  
Since the POC focuses on an intersection and one vehicle manoeuvre, the first branches of the 
ODD are specified by the POC itself. Then, at stage 2, traffic conditions and other road users' 
behaviour shall be considered. Here, only a vehicle running ahead of the EGO vehicle is taken 
into account. For a real and complete validation plan, vulnerable road users such as pedestrian 
are also to be considered but the detection of these other users in not in the objective of this test 
plan.  
The last stage introduces the masks and the environmental conditions. All the basic tests are to 
be carried out in normal daylight conditions. The environmental conditions are to be crossed 
and added to the basic scenarios if they should have an effect. This “addition” of layers in the 
test scenarios is given in the paragraph 5.5.  
 

 
Figure 722 : Scenario generation from ODD and requirements [10] 
 
Some classical failure scenarios are also proposed.  
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5.2 Vehicle systems test scenarios (V) 
5.2.1 Validation of the vision by camera (AI) of the Traffic lights: 
 
These tests must be carried out by the system manufacturer and be presented in the type-ap-
proval documentation. 
 
Scenario V-camera-S.x: Testing the ability of the camera to locate and detect the correct status 
of a traffic light whatever is status in a stationary position. X for the iterations with respect to 
the position.  
Scenario V-camera-D.x: Testing the ability of the camera to locate and detect the correct status 
of a traffic light whatever is its status on a dynamic trajectory. x- for the iteration with respect 
to the TLC plan.  
Scenario V-camera-S-Rep.x: Testing the ability of the camera to locate and detect the correct 
status of a traffic light whatever is status in a stationary position with multiple repetitions to 
assess the repeatability of the system. X for the iterations with respect to the position.  
Scenario V-camera-D-Rob.x: Testing the ability of the camera to locate and detect the correct 
status of a traffic light whatever is status, random tests for robustness validation, speed & po-
sition variations. x for iteration or this test that shall be repeated several times (to be defined) 
Scenario V-camera-S.alldaylong: Testing the ability of the camera to detect the correct status 
of a traffic light on the path for on complete day (time of the OD)  
Scenario V-camera-Latency: Evaluating the latency of the camera to detect the correct status 
of a traffic light 
Scenario V-camera-position: Evaluating the accuracy of the camera to locate the traffic light 
 
These tests scenarios can be run on a proving ground or in simulation at a validation stage.  
The documentation may also present some information about the set of data used for the training 
of the AI.  
 
The reliability of this component shall be validated on real road runs or using SIL or HIL with 
a large set of data different from the data used for the training. 
 
The environmental conditions have an important influence on the performance of this system. 
It is important to run all these tests in all environmental conditions and to define the “boundaries” 
of the conditions in which the system performances are validated. These boundaries are signif-
icant results for the qualification of the ODD limits.  
Environmental conditions at listed paragraph 5.5.  
 
5.2.2  Validation of OBU information (SPATEM) 
 
Scenario V-OBU-S: Testing the ability of the OBU to receive SPATEM and to extract the 
precise traffic light status and remaining time in a static position. 
Scenario V-OBU-Latency-S: Evaluating the latency of the ITS-G5 messages and OBU infor-
mation in a static position. 
Scenario V-OBU-Latency-D: Evaluating the latency of the ITS-G5 messages and OBU infor-
mation on a dynamic test. 
Scenario V-OBU-D: Testing the ability of the OBU to receive SPATEM and to extract the 
precise traffic light status and remaining time on the shuttle path (Coverage). This test shall be 
repeated several times (number to be define) for assessing the robustness.  
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5.2.3 Validation of information fusion (F) from the camera and the UEV information  
 
Scenario V-F-S: Testing that OBU and camera information are consistent in a static position.  
Scenario V-F-D: Testing that OBU and camera information are consistent while running on 
the pathway. 
Scenario V-F-D-robustness.x: Testing that OBU and camera information are consistent while 
running on the pathway and repeating this test several times. 
 
N.B. repeating the exact configuration of a dynamic test is complex for such de complicated 
system. Repeatability should be assessed with the robustness tests.  
 
These tests can also be crossed with the environmental condition modalities.  
 
5.2.4 Validation of the decision brick (D) 
 
Scenario V-D-cycle.x: Testing the vehicle dynamic behaviour with iterations to cover all the 
traffic light cycle and analyse all situation.  
Scenario V-D-repeatability.x: Testing the vehicle dynamic behaviour repeatability by starting 
the vehicle run always at the same traffic light cycle time. X for several iterations.  
Scenario V-D-robustness.x: Testing the vehicle dynamic behaviour robustness by starting the 
vehicle run at one or two strategic times of the traffic light cycle that implies a shirt in the 
vehicle strategy (stopping at red light or running before it turns red). X for several iterations 
around the strategic points. 
 
These tests can also be crossed with the environmental condition modalities.  
 
5.3 Road equipment tests (R) 
 
Traffic light controller is a standard product with many safety certifications. Testing its func-
tioning is not an objective.  
These tests shall be carried out during an ARTS deployment preparation, or by a technical ser-
vice on its tracks to be able to run type-approval tests.  
RSU and its message conformity with the Specifications given by the vehicule or ADS manu-
facturer shall be verified. Usually, ETSI specifications are the basis [11].  
 
Scenario RSU-SPATEM: Testing the validity of the signal phase and timing in the SPATEM 
sent by the RSU.  
Scenario RSU-coverage: Testing the good reception of the RSU messages on the ways of the 
intersection.  
 
5.4 Full system tests (FS) 
5.4.1 Nominal scenarios (N) 
 
Scenario FS-N-1.x: Testing the ability of the vehicle to cross the intersection whatever the 
status of the traffic light – x gives the iteration of the test in the TLC plan. X for the iteration 
according to TLC cycle.  
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Scenario FS-N-2.x: Testing the ability of the vehicle to cross the intersection whatever the 
status of the traffic light, following a slow car.  
Scenario FS-N-3.x: Testing the ability of the vehicle to cross the intersection whatever the 
status of the traffic light, following a slow truck (hiding the traffic light for the camera).  
 
5.4.2 Failure scenarios (F) 
 
Scenario F-camera-off: Testing the behaviour of the system / vehicle if the camera is electri-
cally switched off.  
Scenario F-camera-dirt: Testing the behaviour of the system / vehicle if the windscreen in 
front of the camera is dirty.  
Scenario F-OBU-off: Testing the behaviour of the system / vehicle if the OBU is electrically 
switched off.  
Scenario F-light-ooo: Testing the behaviour of the system / vehicle if the current traffic light 
bulb is out of order.  
Scenario F-RSU-off: Testing the behaviour of the system / vehicle if the OBU is electrically 
switched off.  
Scenario F-TLC-default: Testing the behaviour of the system / vehicle if the TLC is in default 
mode (flashing yellow light)  
Scenario F-TLC-off: Testing the behaviour of the system / vehicle if the TLC is electrically 
switched off. 
 
5.5 Environmental conditions  
 
According to the stage of the project, type approval (vehicle), or deployment of an ARTS, the 
environmental conditions of the ODD or OD shall be analysed to define metrics and boundaries. 
In this POC, the environmental conditions are specified in the paragraph 4.2. The following 
tests are proposed: 
 
Scenario XX – Night: Testing the system, at night without urban lighting or with urban light 
according to the ODD or OD.  
Scenario XX – Rain : Testing the system during a rainy day. The rain conditions shall be 
characterised by a metrics.  
Scenario XX – Night - Rain: Testing the system, at night without urban lighting in rainy con-
ditions 
 
The pathway is heading northwest, so grazing light conditions are not considered in this POC 
but it can be a test modality. 
 
The system is not supposed to operate in foggy conditions, meaning that it shall have a mean 
to control it ODD boundary. Additional scenarios to verify the ability of the system to detect 
that it is operating inside the boundaries of its ODD shall be define and tested. 
 

6. Test equipment 
6.1 The tracks 
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Tests will be carried out in TRANSPOLIS urban area in les FROMENTAUX site. The ground 
network and track configuration are shown on Figure 74. The shuttle path of the POC is pre-
sented in yellow. 
 

 
Figure 723 : Les Fromentaux proving ground of TRANSPOLIS and its ground network.  
 

 
Figure 724 : Picture of the POC intersection. F3 in the front plan (see Figure 721)  

 
6.2 The intersection equipment 
 
As presented Figure 721, the intersection is equipped with full and classical French traffic light 
system:  

 A traffic light Controller (TLC) Lacroix traffic TRAFFY 
- Aluminium street cabinet 800, 1250 / 800 / 420, RAL 1015 
- General electrical protection 32A 300 mA 
- CPU GPS 
- Traffic lights cards 
-  Command agent for 2 positions, Lacroix city  

 Four Alumix traffic lights equipped with Equinoxe LEDs 
 Four Aluminium posts 
 Four R12 pedestrian signals.  
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The controller is programmed using a Winfraffy software. This software is installed on a Win-
dows computer connected to the controller and allows to define all the intersection configura-
tion and to set traffic lights cycles and programs. All traffic light system specifications are given 
in Annex.  
 
An ITS-G5 Roadside Unit of Lacroix city manufacturer is connected with ethernet to the TLC. 
THE RSU logs (csv of wireshark captures) will be used for verifications and validations. The 
specifications of the RSU are presented in annex.  
 
6.3 The vehicle POC  
 
The equipped vehicule is a 2018 FORD FOCUS.  
 
The AI brick is Openpilot, installed on a comma 3X device connected to the vehicle CAN with 
a specific FORD hardness.  

 

 

(a) (b) 
Figure 25 : (a) COMMA 3X display – Installation inside the Ford Focus 
 
Comma 3x technical specifications:  

 CAMERAS 
- Three 1080p cameras w/ 140 dB of dynamic range: dual-cam 360° vision and a 

narrow cam to see far-away objects 
 PROCESSOR 

- Qualcomm Snapdragon 845 
 CAN FD ENABLED 

- Supports CAN FD vehicles without extra hardware 
 STORAGE 

- 128GB built in storage 
 CONNECTIVITY 

- LTE 
- Wi-Fi 
- High-Precision GPS 

 NIGHT-VISION 
- IR LEDs for interior night-vision monitoring 
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 DISPLAY 
- 2160x1080 Beautiful OLED display 

 PORTS 
- OBD-C port (USB-C w/ CAN) 
- USB 3.1 Gen 2 port 

 
A Lacroix city On-Board Unit is also installed in the vehicle. The specification of this OBU is 
presented in Annex 9.3. The OBU logs will be used for verification and validation.  
It communicates in Wi-Fi with a computer that is also connected with Ethernet to the Comma 
device.  
 
6.4 The vehicle equipment for the tests 
 
To validate the functioning of the systems, the position of the vehicle shall be recorded; for 
that, the equipment presented in Table 7.  
 
Information and event synchronisation shall also be evaluated by filming HMI. For that, a 
video synchronisation system for four cameras can be used (see Erreur ! Source du renvoi 
introuvable.7) 
 
The environmental conditions shall also be recorded using equipment such as a luxmeter, rain 
gauge or other devices to be specified.  
 
Table 7 : Motion recording system 

OxTS RT3003 XG SyncOmni 

  

Inertial measurement Unit and GPS with dual an-
tenna 

Controller 

Performance (accuracy): 
Position: Glonass L1,L2 0.01m 
Speed : 0.05km/h RMS 
Roll/Pitch: 0.03° Cap : 0.1° 
Angular speed : 0.01°/s 
Acceleration: 0.01%/ Taux 100m/s² 
Frequency : 100Hz 

Functionality:  
Differential Measurement in real time (up to 16 tar-
gets) 
Synchronisation of data  
CAN output 

ABD Camera 
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Specifications: 
1 Camera Logitech C920 
1080p  
30fps 
Synchronised videos with motion data 

 

 

 

Figure 726 : PDRIVE system (tests and training no longer produced) 

7. Conclusion 
 
This work is a first step to evaluate the possibility to validate an ADS including one or two AI 
bricks. Again, the objective of this work is not to validate a product but to show the ability of 
TRANSPOLIS to validate a potential POC including its AI bricks.  
Protocol details will be defined and tested. Further reflexion will be carried out about the com-
pleteness of the scenarios and considered requirements. The results of these investigations will 
be presented in PRISSMA deliverable L3.6. 
No cybersecurity scenario is presented in this document. They will be defined and tested within 
the framework of WP5.  
 
 

8. Acronyms  
 
AI: Artificial Intelligence 
CAM : Cooperative Awareness Message 
MAPEM : MAP Extended Message 
OBU: On Board Unit 
RSU: Road Side Unit 
SPATEM : Signal Phase and Timing Extended Message 
TLC: Traffic Light Controller  



[L3.3] Protocol for the second test campaign 
 

p. 145 
 

9. Annex  
9.1 Traffic light system specifications 
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9.2 Road Side Unit specifications 
https://www.lacroix-city.com/wp-content/uploads/sites/7/2019/10/0322_LACROIX-
CITY_V2X_Station_outdoor_Brochure_EN-1.pdf  

 

 

https://www.lacroix-city.com/wp-content/uploads/sites/7/2019/10/0322_LACROIX-CITY_V2X_Station_outdoor_Brochure_EN-1.pdf
https://www.lacroix-city.com/wp-content/uploads/sites/7/2019/10/0322_LACROIX-CITY_V2X_Station_outdoor_Brochure_EN-1.pdf
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9.3 On-Board Unit specifications 
https://www.lacroix-city.com/wp-content/uploads/sites/7/2019/10/0322_LACROIX-CITY_V2X_V2V_Unit_Brochure-EN-
1.pdf  

 

https://www.lacroix-city.com/wp-content/uploads/sites/7/2019/10/0322_LACROIX-CITY_V2X_V2V_Unit_Brochure-EN-1.pdf
https://www.lacroix-city.com/wp-content/uploads/sites/7/2019/10/0322_LACROIX-CITY_V2X_V2V_Unit_Brochure-EN-1.pdf
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CONCLUSION  
 
In conclusion, this deliverable stands as an important part of the PRISSMA project, showing 
how traditional track testing can be included in the use of AI-enabled vehicles, and how it can 
be complemented with new approaches to bench testing or the addition of new technologies. 
The five evaluation protocol (for each POC) presented herein offer a wide range of possibilities 
for track and bench testing in this context, while retaining a common structure. They show not 
only how to generalize conventional and regulatory track testing, but also how to integrate the 
simulation approach. Being able to couple real-world testing with simulation is a real break-
through compared with traditional vehicle homologation. If simulation is involved, the protocol 
developed in Deliverable 2.7 must also be applied for this specific part. However, because of 
the versatility of the test facilities, and in contrast to what was done in Deliverable 2.7 for the 
simulation part, the choice was made here to keep only a common structure for the test protocols 
and to emphasize the declination in the POCs rather than the reverse. 
 
The inclusion of use cases through five Proofs of Concept demonstrates the practical appli-
cation of the protocol common structure but also showcases the adaptability and versatility of 
the PRISSMA methodologies across various scenarios. Each POC exemplifies the protocol's 
effectiveness in assessing the AI's performance, ensuring its robustness, safety, reliability under 
diverse applications and with regard to several technologies that could be tested within this 
work package 3. Deliverable 3.4 will shed further light on the methods used to validate these 
tools. 
 
Moving forward, this deliverable serves as a springboard for continued refinement, optimiza-
tion, and expansion of the classical test tracks. The collaborative efforts involved in its devel-
opment reflect our commitment to ensuring the safety, efficiency, and advancement of 
autonomous vehicles. 
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