
PRISSMA Project
Plateforme de Recherche et d’Investissement pour la Sûreté

et la Sécurité de la Mobilité Autonome
04/2021 - 04/2024

[DELIVERABLE 2.9] PROOFS-OF-CONCEPT FINAL REPORT:
DEVELOPMENT OF PLATFORMS MEETING THE DESIRED

OBJECTIVES OF EVALUATING MEANS OF AUTOMATED MOBILITY
[LIVRABLE 2.9] POCS FINAUX: DÉVELOPPEMENT DES PLATEFORMES RÉPONDANT AUX OBJECTIFS RECHERCHÉS

D’ÉVALUATION DES MOYENS DE MOBILITÉ AUTOMATISÉE

Main authors : D. Gruyer (UGE), R. Régnier (LNE), G. Durand (AVSimulation),
C. Chaves (AVSimulation), K. Quintero (IRT SystemX), Keilatt Andriantavison (Valeo),
Wei Xu (UGE), Sio-Song Ieng (UGE), Alexandra Duminil (UGE), Jean-Baptiste Horel

(INRIA), Cedric Gava (SPHEREA), Charlotte Segonne (Cerema) ...

Keywords: Simulation, evaluation, AI systems, validation plan and requirements, validation
methods, verification process, evaluation protocol, scenario generation, metrics, KPI, risk as-
sessment, performance indicators, simulation tools, sensor models, traffic simulation, graphical
and physic engines, simulation environments, poc, proof-of-concept

Abstract. This document describes the final state of the implementation of proofs-of-concept
(POC) that aim at demonstrating the use of simulation tests during the homologation and
certification processes of autonomous vehicles. Several POC has been developed within the
PRISSMA project and their particular ongoing work is presented separately.

Résumé. Ce document décrit l’état final de la mise en œuvre des preuves de concept (POC)
qui visent à démontrer l’utilisation des tests de simulation lors des processus d’homologation
et de certification des véhicules autonomes. Plusieurs POC ont été développés dans le cadre du
projet PRISSMA et les résultats obtenus sont présentés séparément dans ce document.

1

Contents

1 Introduction (ALL) 1

2 POC 1: Bus Station Automated Service (BuSAS) on real-life track and simulation
(UGE, SPHEREA) 3
2.1 Presentation . 3

2.1.1 Overall Goals . 3
2.1.2 Design Domain . 8
2.1.3 Tests in Simulation and Expected Results 13

2.2 Perimeter Definition . 14
2.2.1 Simulation Environment and generic methodology 14
2.2.2 Real-World Testing Conditions . 25
2.2.3 Choice of Artificial Intelligence Algorithm 27

2.3 Proposal of a generic multi-modal framework 35
2.3.1 General framework for scenario management 36
2.3.2 General framework for DataSets and Ground Truth generation 40
2.3.3 General framework and methodology for Digital Models generation . . 51
2.3.4 Generic and interoperable simulation framework 54
2.3.5 Simulation platforms derived from the generic framework 56

2.4 Methods, procedures, and protocols for evaluation and validation 62
2.4.1 Evaluation of Object Detection . 62
2.4.2 Evaluation of Multi-Objects Tracking 64
2.4.3 Evaluation of Lane Detection . 67
2.4.4 Verification and validation of sensor models 69
2.4.5 Method of evaluation of the fidelity of synthetic data: correlation be-

tween physical test and simulation . 70
2.5 Final Implementation . 78

2.5.1 Implementation basis . 78
2.5.2 Environment and System Modelling 78
2.5.3 Scenarios Management . 79
2.5.4 Digital Models developed in the framework of PRISSMA or associated

projects . 80
2.5.5 Adverse Features and simulation under complex scenarios 83
2.5.6 Datasets Collection and Annotation 85

2.6 BuSAS DataSets generation and analysis . 86
2.6.1 DataSet generation . 87
2.6.2 DataSet extension . 88
2.6.3 Evaluation and validation results . 94

2.7 Discussion and Recommendations for future developments and improvements . 99
2.7.1 Future Developments on ImPACT 3D 100
2.7.2 CARLA and U-Test . 103

3 POC 2: Valeo Urban Driving (VALEO) 108
3.1 Presentation . 108
3.2 Perimeter Definition . 109

3.2.1 Description of the System Under Test 109

[L2.9] Final POCs

3.2.2 Operational Design Domain . 111
3.2.3 Sensor Model . 113
3.2.4 Overview of the Intermediate Results 113

3.3 Simulation platform enhancement . 114
3.3.1 Test run creation . 115
3.3.2 Simulation orchestration . 117
3.3.3 Parameter distribution . 118
3.3.4 Conclusion and perspectives . 120

4 POC 3: Vehicle-In-The-Loop (VIL) real vs. simulation (UTAC, AVS) 122
4.1 Presentation & Overall Goals . 122

4.1.1 Operational Design Domain . 122
4.1.2 Tests in Simulation and Expected Results 123

4.2 Perimeter Definition . 124
4.2.1 Simulation Environment . 124
4.2.2 Real-world Testing Conditions . 127
4.2.3 Choice of Artificial Intelligence Algorithm 128
4.2.4 Data to be Extracted . 130
4.2.5 Methods, Procedures and Protocols for Evaluation 130

4.3 Implementation . 132
4.3.1 Scenario Management (MOSAR) . 132
4.3.2 Scenario Management (Pack UTAC) 132
4.3.3 Ongoing Development . 132

5 POC 4: Vehicle-In-The-Loop (VIL) real vs. simulation (TRANSPOLIS, INRIA) 134
5.1 Presentation & Overall Goals . 134

5.1.1 Design Domain . 134
5.1.2 Tests in Simulation and Expected Results 134

5.2 Perimeter Definition . 135
5.2.1 Simulation Environment . 135
5.2.2 Real-World Testing Conditions . 136
5.2.3 Choice of Artificial Intelligence Algorithm 136
5.2.4 Data to be Extracted . 137
5.2.5 Methods, Procedures and Protocols for Evaluation 138

5.3 Implementation . 139
5.3.1 Scenario Management . 139
5.3.2 Dataset generation and analysis . 139

6 POC 5 : complementarities between PAVIN and simulation (CEREMA, LNE) 141

7 Other systems in the simulation environment 144
7.1 IRT SYSTEMX . 144
7.2 CEREMA . 144

8 Final Considerations (ALL) 146

2

[L2.9] Final POCs

List of Figures

1 V-cycle for virtual prototyping, test, evaluation, and validation([1]) 1
2 Table summarising the five final POCs implemented in PRISSMA. 2
3 POC BuSAS, a generic way to compare real and virtual scenarios in same envi-

ronment (From Paris2Connect real environment to Paris2Connect virtual Dig-
ital Model passing through Controlled environment (real and virtual) (Source
UGE) . 4

4 POC BuSAS, the detailed view of PRISSMA methodology applied to POC 1
BuSAS with objectives for each stages and layers of modelling and implemen-
tation (real and virtual) (Source UGE) . 4

5 POC about Bus Station Automated Service (BuSAS). A view of the different
scenes (Source UGE). 6

6 Functional architecture of the Bus Station Automated Desert Service imple-
mented in RTMaps environment (Source UGE). 7

7 Classification of the type of disturbers in the propagation channel impacting the
quality of the sensor data (Source UGE). 14

8 General architecture for simulation environment in POC 1 (called BuSAS) with
link with WPs and WP2 tasks (Source UGE) 15

9 Path Edit: A platform for the trajectory generation and object positioning (Source
UGE) . 16

10 GRoTex: A generator of road texture with a set of filters to generate degraded
conditions (Source UGE) . 16

11 ROADS: An OpenDrive road network builder with a mesh generator (Source
UGE). 17

12 Pro-SiVIC: A dedicated simulation platform for realistic sensor simulation (Source
UGE and ESI) . 18

13 Pro-SiVIC: Sensor Simulation using Unreal Engine (Source ESI) 18
14 Pro-SiVIC: Filters and mechanisms for the light and the atmospheric distur-

bances modeling, generation, and management using mgEngine (Source UGE
and ESI) . 19

15 Pro-SiVIC: Existing interfaces and peripherals controllers (Source UGE) 20
16 Dynamic model of vehicles in Pro-SiVIC (Source UGE) 20
17 Some other Digital Models implemented in Pro-SiVIC. The left DM represent a

generic city centre with the main meetable intersections. The screen shot in the
centre provides some view of the centre of Brisbane (Australia). The pictures
in the right part provide a part of the main road located in Bouguenais (near
Nantes). (Source UGE). 21

18 Example of full driving automation application in a RTMaps diagram with mod-
els for Perception/Decision/Action (Source UGE). 22

19 DDS and DDsL, a generic library for tools and softwares interfacing (Source
UGE). 23

20 SPHEREA U-TEST integration with Carla and Pro-SiVIC through DDS 23
21 Sensor topology in both real and virtual Renault Zoé in ImPACT 3D (Source

UGE). 25
22 Embedded architecture in the real Renault Zoé called ImPACT 3D VA (Source

UGE). 25

3

[L2.9] Final POCs

23 POC1, a simple overview of the functional architecture of the bus station au-
tonomous desert service (Source UGE and ESI). 27

24 Applications of object detection tasks . 28
25 Milestones of Object Detection Algorithm [2] 28
26 Overall architecture of YOLOv5 model [3] 30
27 Performance of YOLOv5 on COCO dataset [4] 31
28 Benchmark performance of SORT [5] . 32
30 Definition of Lane Detection [6] . 32
29 Overall architecture of Ultra-Fast-Lane-Detection model [6] 33
31 Deployment of TensorRT [7] . 33
32 Pro-SiVIC, a generic and physically realistic simulation platform for sensors,

vehicles, and the environment. Right: Co-Pilot application (Source UGE and
ESI). 34

33 Architecture in RTMaps (Source UGE). 34
34 Object detection with tracking applied in virtual Co-Pilot (Source UGE). 35
35 Lane detection applied in virtual Co-Pilot (Source UGE). 35
36 Generic Conceptual Framework of SiVIC-ADVeRSce: The scenario definition,

management, execution (Source UGE) . 36
37 Ground truth of visual perception from the real world and simulation 38
38 Generic Conceptual Framework of SiVIC-ADVeRSce: The Dataset definition,

generation, and post processing (Source UGE) 41
39 Structure of the dataset generated in BuSAS 45
40 Generic Conceptual Framework of SiVIC-ADVeRSce: Data collected from

Pro-SiVIC involving Depth Map and segmentation TM (Source: UGE)[8] . . . 47
41 Generic Conceptual Framework of SiVIC-ADVeRSce: Generation of a set of

annotation (Source UGE) . 48
42 Process for the generation of Digital Model (source: UGE). 53
43 Digital Twin process of development (source: UGE). 54
44 Final overview of the generic simulation framework proposed by UGE for the

evaluation and validation of AV (Source: UGE) 55
45 Simplified generic simulation framework proposed and developed by UGE (Source:

UGE) . 56
47 Proposal of a Driving Simulation architecture from the generic framework pro-

posed by UGE (Source UGE) . 56
46 Implementation of the POC 1 simulation platform (Source UGE) 57
48 Proposal of an Automated Vehicle Simulation architecture from the generic

framework proposed by UGE (Source UGE) 58
49 Proposal of a Connected and Automated Vehicle Simulation architecture from

the generic framework proposed by UGE (Source UGE) 58
50 Proposal of a Connected and Automated Vehicle Simulation architecture from

the generic framework proposed by UGE (Source UGE) 59
51 Proposal of a Distributed Connected and Automated Vehicle Simulation archi-

tecture from the generic framework proposed by UGE (Source UGE) 59
52 Proposal of a Vehicle in the Loop architecture involving AV simulator and ap-

plication environment from the generic framework proposed by UGE (Source
UGE) . 60

4

[L2.9] Final POCs

53 Proposal of an Interconnected platform as the concept of ImPACT 3D. ImPACT
3D is developed by UGE and will work in real time with a real proprtype on the
test track and a dynamic and immersive simulation platform. This distributed,
interconnected, and dynamic platform relies on the generic framework proposed
by UGE (Source UGE) . 61

54 Impact 3D: an interconnected platform with dynamic and immersive platform
and real automated vehicle (Source UGE) . 61

55 An example ROC curve (Detection Rate vs. False Positive Rate) [9] 63
56 Prameters of MOT evaluation [10] . 65
57 Sub-metrics of HOTA [11] . 66
58 Parameters of ASSA [11] . 67
59 Illustration of the key parameters and performance metrics for evaluating lane

analysis process [12] . 68
60 E2E-LD and PSLD . 69
61 Diagram of the proposed method for scores generation about synthetic image

fidelity (Source: UGE). 71
62 AI-based networks for the computation of fidelity scores ([13]) (Source: UGE) 72
63 Images from GTA V, GTA/Cityscapes and GTA/Mapillary datasets. 76
64 Overview of the multi-criteria combination method for the assessment of a

global fidelity score involving uncertainty and potential conflict detection. (Source:
UGE) . 77

65 Graphs resulting from the multi-criteria combination (left) and the generation
of BBA with BBF (right).(Source: UGE) . 78

66 Digital Model of the Satory’s test track (Source UGE). 80
67 Digital Model of the Satory’s test track in comparison with real test track (Source

UGE). 80
68 View of the Transpolis test tracks. 81
70 Digital Model and HD Maps (Transpolis), a long and resource consuming pro-

cedure (source: UGE). 81
69 Digital Model developed for Transpolis test track (source: UGE). 82
71 Digital Model in progress for the Paris2Connect Use case in PRISSMA (source:

UGE and VALEO). 83
72 Digital Model and Ambient Occlusion Map, a mandatory rendering mechanism

in order to improve significantly the image fidelity (source: UGE and VALEO). 83
73 Screenshot of the Digital Model usable in the Digital Shadows Paris2Connect

(source: UGE and VALEO). 84
74 Adverse scenarios from Pro-SiVICTM (Source: UGE) 85
75 Parameters of different weather filters defined in Pro-SiVICTM 88
76 Example of some post-processed foggy images (slight and dense fog) from the

BuSAS dataset generated with the unpaired image translation method. The
generated images have been resized. 89

77 Improvement of the quality of the rendering for a synthetic image generated
from Pro-SiVIC on the Satory’s test tracks with foggy and rainy conditions.
The first image on the top left is the initial generated image from Pro-SIVIC.
The height other images are generated from AI-based methods with different
parameters allowing to fit with the initial image. (Source: UGE). 89

5

[L2.9] Final POCs

78 Improvement of the quality of the rendering for a synthetic image generated
from Pro-SiVIC on the Satory’s test tracks with clear weather conditions. The
first image on the top left is the initial generated image from Pro-SIVIC. The
5 other images are generated from AI-based methods with different parameters
and environment variations allowing to fit with the initial image. (Source: UGE). 90

79 Improvement of the quality of the rendering for a synthetic image generated
from Pro-SiVIC on the Satory’s test tracks. The top left image is the initial
image generated from Pro-SiVIC. The other ones are generated from AI-based
methods. In this AI-based generation, the rain drops are removed and the fog is
kept with some effect of smoke cloud (Source: UGE). 90

80 Improvement of the quality of the rendering for a synthetic image generated
from Pro-SiVIC on the Satory’s test tracks. The top left image is the initial
image generated from Pro-SiVIC. The other ones are generated from AI-based
methods. (Source: UGE). 91

81 Improvement of the quality of the rendering for a synthetic image generated
from Pro-SiVIC on the Transpolis’ test tracks. The top left and bottom left
images are the initial images generated from Pro-SiVIC. The other ones are
generated from 2 AI-based methods (Source: UGE). 91

82 Improvement of the quality of the rendering for a synthetic image generated
from Pro-SiVIC on the Transpolis’ test tracks. The top left image is the initial
image generated from Pro-SIVIC. The other images are generated from AI-
based methods with a variation of some parameters (Source: UGE). 92

83 Improvement of the quality of the rendering for a synthetic image generated
from Pro-SiVIC on the Transpolis’ test tracks. The top left image is the initial
image generated from Pro-SiVIC. The other ones are generated from AI-based
methods. In this AI-based generation, it is possible to see the different variations
applied to the road in an intersection area. (Source: UGE). 92

84 Improvement of the quality of the rendering for a synthetic image generated
from Pro-SiVIC on the Transpolis’ test tracks, in the countryside part. The top
left image is the initial image generated from Pro-SIVIC. The other images are
generated from AI-based methods with a variation of some parameters (Source:
UGE). 92

85 Improvement of the quality of the rendering for a synthetic image generated
from Pro-SiVIC on the Transpolis’ test tracks, in the countryside part. The top
left image is the initial image generated from Pro-SiVIC. The other ones are
generated from AI-based methods. In this AI-based generation, it is possible to
see the different variations applied to the road in an intersection area. (Source:
UGE). 93

86 Improvement of the quality of the rendering for a synthetic image generated
from Pro-SiVIC on a motorway with fog and wet road surface. The left image
is the initial image generated from Pro-SIVIC. The other images are generated
from AI-based methods with a variation of some parameters. Some correc-
tions and variations are given on the colour and the general colour of the scene
(Source: UGE). 93

6

[L2.9] Final POCs

87 Improvement of the quality of the rendering for a synthetic image generated
from Pro-SiVIC on a motorway with clear weather conditions. The top left im-
age is the initial image generated from Pro-SIVIC and used as a seed. The other
images are generated from AI-based methods with a variation of some param-
eters. On the images on the bottom, it is possible to appreciate the capacity of
extrapolation of the AI-based generative method. (Source: UGE). 94

88 6 scenes for the docking at a bus station . 95
89 First round: Result of AI-based obstacles detection on different weather condi-

tions at component level . 98
90 ImPACT 3D architecture with real and virtual test facilities: ImPACT 3D VA

and VR&Motion (Source UGE). 101
91 TRUSTONOMY project: Virtual copilote implementation with L3 and L4 of

automation in UGE’s Renault Zoé (Source UGE). 101
92 TRUSTONOMY project: Virtual copilote implementation with L3 and L4 of

automation in PROSIVIC platform (Source UGE). 102
93 PROSIVIC and RTMaps: An efficient platform for virtual copilote implemen-

tation with L3 and L4 of automation (Source UGE). 103
94 PROSIVIC, RTMaps, and NS3: An efficient platform for C-ITS prototyping

with physico realistic communication means (Source UGE). 103
95 Carla . 104
96 U-TEST Solution (Source SPHEREA). 105
97 Carla - U-TEST architecture (Source SPHEREA) 105
98 Carla demo Map (Town10HD) with circuit (in red) 106
99 POC Running : Carla Vehicle driven by U-TEST (Source SPHEREA). 107
100 Simulation architecture for the Valeo Urban Driving PoC 2 108
101 Matrix of test possibilities for different component levels 109
102 Overview of the IA System Under Test . 110
103 Screenshot of the RTMaps diagram (.rtd) . 111
104 Globalview of the processflow to create road network 112
105 Topview of the roadnetwork imported from OpenStreetMap 112
106 Global Typology of sensor models . 113
107 View of the co-simulation running on Valeo premises 114
108 Global view of the Simulation Framework orchestration 115
109 View of the IPG Road 5 Scenario Creation . 116
110 Adding the traffic elements . 116
111 Adding the traffic elements . 117
112 Rendering of the simulation on IPGMovie and RTMaps birview 117
113 Architecture d’orchestration à travers les socktets 118
114 Vue schématique du paramètre ’dist’ . 119
115 Figure extracted from Euro NCAP AEB LSS VRU Test Protocol - v4.1 123
116 Logical architecture of the simulation environment involving SCANeR studio

in PRISSMA. Source: [?]. 125
117 3D modelling of the TEQMO terrain in SCANeR studio. 125
118 View of a virtual pedestrian crossing scenario test. 126
119 Comma 3 device and its three cameras. 126
120 Screenshot of SCANeR studio GUI displaying the sensor configuration con-

taining the camera models. 127

7

[L2.9] Final POCs

121 Sample of Comma Three Images. 127
122 TEQMO map showing the different test tracks 128
123 Euro NCAP targets used by UTAC . 128
124 Simplified representation of openpilot end-to-end neural-network architecture. . 129
125 Data flow diagram around openpilot. Source: [14] 129
126 Data flow diagram around openpilot. Source: [15] 130
127 Vehicles under test used to collect multi-sensors data during driving scenarios . 131
128 Comparison between a synthetic image and its real counterpart. 131
129 Longitudinal distance between ego car and its target estimated by a smart-camera.132
130 openpilot autonomous driving software stack. 133
131 Inria experimental platform: Renault Zoe car equipped with Velodyne HDL64,

4 Ibeo Lux LiDARs, Xsens GPS and IMU and cameras. 134
132 Experimental Platform: digital twin . 135
133 Augmented Reality framework . 135
134 Transpolis Fromentaux proving ground digital twin 136
136 Inria CMCDOT framework . 136
135 Transpolis site . 137
137 JSON file describing an overtaking scenario 140
138 Set of scenarios applied and generated in the POC 5 dedicated to the pedestrian

detection with YOLO (Source CEREMA and LNE). 141
139 Experimental framework implemented in POC 5 with PAVIN facilities and

LEIA simulation platform from LNE (Source CEREMA and LNE). 142
140 AI-based detection of pedestrian with with foggy conditions both in controlled

environment and in simulation with a Digital Model of the PAVIN test site
(Source CEREMA and LNE). 142

141 Panel of pedestrian used in POC 5 for the AI-based detection in adverse and
degraded weather conditions (foggy weather) (Source CEREMA and LNE). . . 143

142 The Cerema PAVIN BP platform (source: Cerema) 145
143 Fog producing in the Cerema PAVIN BP platform (source: Cerema) 145

List of Tables

1 Metrics cross different functionalities . 41
2 Description of the data frame provided by Generic object observer 49
3 Description of the data frame provided by car observer 49
4 Description of the data frame provided by road observer 50
5 Description of the data frame provided by human observer 50
6 Description of the data frame provided by different functional modules 51
7 Accuracy (%) of Cross-GlNet and WLet-Net on several test sets (1000 images). 72
8 Fidelity scores (predictions in %) of Cross-GlNet and WLet-Net on several test

sets. 73
9 Contribution of each metric to PC1. The best contributions are in bold. 74
10 Contribution of each metric to PC2. The best contributions among the synthetic

datasets are in bold. The best contributions among the real datasets are underlined. 74
11 Fidelity scores (%) computed from the synthetic and real datasets. 75
12 Final scores obtained with the enhanced synthetic datasets(%) GTA V to Cityscapes

(GTAV/City) and GTA V to Mapillary (GTAV/Map) compared to the original
GTAV dataset. 76

8

[L2.9] Final POCs

13 Reliability α and τ associated to each criterion Sc with a certain value for three
datasets. 76

14 First round: Evaluation value of system metrics for object detection 97
15 Second round: Evaluation value of detection, instance segmentation and tracking 99
16 Results of VRU speed and start distance impact on collision occurrence. 121
17 Topics recorded during the experiments using the tool ROSbag. 138

9

[L2.9] Final POCs

1 Introduction (ALL)

Virtual testing is introduced to reduce the burden of physical tests and effectively provides ev-
idence on the AI performance across the operational domain of a CAV (Connected Autonomous
Vehicle). Virtual testing, evaluation, validation, and certification enter a specific design plan
adapted from the V-cycle, which is the reference to present the design life cycle of a product
such as an ADAS (Advanced Driving System)or an ADS (Advanced Driving System)as shown
in Figure 1 ([16]). The validation stream is always related to the specification stream, mean-
ing that validation plans are designed concerning the specifications. However, specifying and
validating complex systems of systems such as a CAV is a challenging process. To operate
validation plans showing a suitable level of safety and reliability with an acceptable time and
budget, virtual method tests from MIL (Model-In-The-Loop) to VIL (Vehicle-In-The-Loop)
now supplement physical testing: closed site tests and open road tests.

Figure 1: V-cycle for virtual prototyping, test, evaluation, and validation([1])

The validation phases go from the component tests to the functional test of the full system in
its ODD (Operational Design Domain). At the end of a CAV or an ADAS validation process,
approval and certification usually rely on physical tests. However, simulation results are cited
in the list of elements that can contribute to the safety demonstration for the authorisation of a
Highly Automated Vehicle to be operated on its ODD (French Decree n° 2021-873 du 29 June
2021, Art. R. 3152-6.-I ([17])).

To demonstrate feasibility on the use of simulation tools for testing AI-based systems related
to CAV within the PRISSMA project, five different POCs have been proposed so far, as shown
in the Figure 2. As this table indicates, different groups of partners have been composed to
work on specific systems and simulation environments. The table also summaries the type
of AI algorithm present in the system being tested with the simulation tools, as well as the
equivalent physical site where physical tests may be conducted in other work packages of the
PRISSMA project.

1

[L2.9] Final POCs

Figure 2: Table summarising the five final POCs implemented in PRISSMA.

The following sessions describe individually and in further details the aforementioned POCs.

2

[L2.9] Final POCs

2 POC 1: Bus Station Automated Service (BuSAS) on real-life track and simulation
(UGE, SPHEREA)

2.1 Presentation

2.1.1 Overall Goals

The first main goal of this POC called BuSAS is to implement a full Bus station automated
desert service with some function needing to implement IA based function (for detection, iden-
tification, and tracking of obstacles) both in real and virtual conditions. The second objective
will be to propose a complete and generic enough simulation architecture in order to test/eval-
uate/validate the full system, the AI-based perception component, and to verify the validity and
the performance of the simulation tools. The third goal consists to develop a generic valida-
tion methodology with dedicated and representative metrics. At the end, the last objective is
to implement in the real prototype and on the real test track the same validation methodology.
The use of both actual and virtual environment with the access to the digital twin will allow
to implement a relevant comparison of our evaluation/validation methodology from the repre-
sentativeness point of view. The question will be to identify the level of simulation we need to
generate and to use in order to obtain an acceptable enough evaluation/validation. Moreover in
order to evaluate the genericity of our methodology, we have proposed an ODD also similar to
the POC dedicated to the automated serves of the 4 train stations in Paris (POC Paris2Connect).
Depending of the available time, the architecture implemented in Satory could be also imple-
mented on the Paris2Connect’s journey, especially the journey between the Austerlitz and the
Lyon train stations (Van Gogh street till the intersection with the Bercy street). In this frame-
work, the implementation of the full service in both real and virtual environment thanks to the
digital twin using will allow to apply comparison process between real and virtual data obtained
by the system under test and by the full system. This methodology is presented in the figure 3 for
an simple overview and in figure 4 for a more detailed view with the identification of the main
objectives addressed for each layers. It is also interesting to mention that in PRISSMA, UGE
has funded with additional intern budget the building of 2 additional Digital Models. The first
one is the Paris2Connect area (co-funded with VALEO), and the second one is the Transpolis
area. These 2 additional digital models will be presented in a next section.

3

[L2.9] Final POCs

Figure 3: POC BuSAS, a generic way to compare real and virtual scenarios in same environment (From
Paris2Connect real environment to Paris2Connect virtual Digital Model passing through Controlled environment
(real and virtual) (Source UGE)

Figure 4: POC BuSAS, the detailed view of PRISSMA methodology applied to POC 1 BuSAS with objectives for
each stages and layers of modelling and implementation (real and virtual) (Source UGE)

In order to reach these objectives, in the evaluation and validation processes, several levels
have been defined and need to be addressed. The application of this methodology merging real,
controlled, and virtual environment allows to provide a first way to build answers to a set of
questions concerning evaluation and validation process for AI-based applications.

• System under test: The first one is the level System (or service). This level needs to
implement the full mobility service and to propose relevant and representative scene and

4

[L2.9] Final POCs

scenario involving an exhaustive set of conditions/configurations/situations allowing to
quantify the performances and the quality of the service in the conditions defined in the
ODD. This level needs to involve the car in the loop. The figure 23 shows the needed
functional modules and more accurately the AI-based modules which could be under
test.

• Component under test: The second level focuses on the component aspect. In this level,
component means the algorithms, the functions, the ECU (Electronic Control Units) and
all aspect involving a functionality with identified limits. For instance, this level could
test, evaluate, and validate a perception module, a decision module, or a path planning
module. The validation can be done with an open code or a closed code with only an
access to the inputs and outputs of this black box. This level don’t need to use the full
service of mobility and it is not mandatory to have the car in the loop. Moreover, in the
PRISSMA framework, we have to focus on AI-based module and components.

• Verification and validation of tools and models: The third level will address the veri-
fication and validation of the models and tools used in the full simulation architecture in
order to validate the system or the component. In this level, we have to propose some
experimental plan built from the WP1 outputs in order to take into account the scenes
and the scenarios involving disturbances/failures/attacks/interferences impacting the AI-
based components. We have to prove the capability of our tools and models to generate
these adverse/degraded conditions with good enough behaviour/effect/rendering.

• Evaluation/validation process and methodology: The fourth level concerns the pro-
posal of a methodology of evaluation/validation in the system and component levels with
a set of appropriate metrics. In this part, we need to address the recording of the data, the
format of the recorded data, and the development of the stages needed in the analysis of
the data (definition, implementation, and use of KPI (Key Performance Indicators) and
metrics). This aspect is addressed and processed in the WP1 of the PRISSMA project.

• Scenarios for adverse conditions: The last one concerns the capability to generate repre-
sentative and accurate/realistic enough scenes and scenarios involving the static physical
environment, the environment conditions, and the dynamic physical environment involv-
ing dynamic actors and the ego-vehicle. This level is clearly in relation with the ”Verifi-
cation and validation of tools and models” part.

In this POC BuSAS, these 3 levels will be addressed. In order to reach this challenge, several
requirements have to be tackled:

• The full mobility service need to be designed, implemented, and working in real/virtual
conditions

• ODD needs to be defined very accurately.

• The evaluation platform needs to involve the different tools and models allowing to re-
produce the full environment and the main important situation and conditions.

• The first and second level of evaluation needs to have an access to ground truth

• In the simulation platform, the availability of a physical and realistic digital twin is essen-
tial and probably mandatory.

5

[L2.9] Final POCs

This POC clearly faces a strong challenge. About the first requirement, we choose to design and
implement in a real prototype and in a virtual platform/environment a full Bus station automated
desert service. It is interesting to quote that the Bus station automated desert service will apply
6 different scenes continuously on a trajectory covered 3,4 km on the Satory’s test track with
4 or 5 bus stations. The environment will have bends with very small radius of curvature and
intersections that may contain vehicles entering the main road and the ego-vehicle traffic lane.
Moreover, with apply a strong constraint on the ego-vehicle. It does not have the capability to
make lane changing and collision avoidance by lane changing. The ego-vehicle will only keep
the same lane during all the evaluation and validation process.

Figure 5: POC about Bus Station Automated Service (BuSAS). A view of the different scenes (Source UGE).

The POC BuSAS will be modelled by at least 6 possible scenes. The figure 5 represents the
upstream and downstream scenes for the docking at a bus station:

• The first scene corresponds to the nominal driving mode. In this mode the shuttle or
automated vehicle is driving on the right lane with a max speed up to 20 km/h and, in
case of front moving vehicle, it will manage the inter-distance and apply a car following
manoeuvre.

• The second scene occurs when the distance between the ego-vehicle and the bus station
is lower than a threshold and the bus station is identified by the perception system. In this
second scene, the vehicle will apply dedicated both longitudinal and lateral profiles in
order to reach the bus station with constraints of ego-vehicle speed and lateral deviation.

• The third scene concerns the stop period to the bus station allowing passengers to get on
and off.

• The fourth scene focuses on the restarting from the bus station with dedicated longitudi-
nal and lateral profiles allowing to reach the centre on the right lane.

• The fifth scene is similar to the first one.

6

[L2.9] Final POCs

• The last scene concerns the reaction on a critical event like an object stopped on the right
lane. In this situation, the ego-vehicle will have to apply an Emergency Braking allowing
to avoid or to mitigate the collision. In this scene, it is possible to have a combination of
elements building the risk situation. For instance, dense fog or string rain could reduce
strongly the visibility distance and avoid to detection an obstacle on the traffic lane.

About the second requirement, an ODD has been proposed in order to fit not only with the ser-
vice deployed on the Satory’s test track but also to fit with the Paris 2 Connect POC (automated
shuttle for the train station desert in Paris). Next section will present the designed ODD. The
third requirement needs to implement a great set of tools, models, facilities, algorithms in order
to validate the performance of the service in both real condition and virtual environment. In
this part, a Renault Zoé has been equipped with hardware and software equipment. The same
virtual model (Renault Zoé 3D) has been implemented in Pro-SiVIC. Moreover, a set/topology
of sensors have been implemented. This two aspects will be presented in both sections 2.2.1 and
2.2.2 The next requirement was the access to a ground truth. In this context, the evaluation and
validation process will be done with the same sensors and observers. In both, the actual Renault
Zoé and virtual Renault Zéo, an RTK GPS will be available, the data about vehicle state will be
collected on the CAN bus and by an observer in the simulation environment, the road marking
positioning will be available and could be recorded from a ”trk” file (centimetre measurement
of the road marking coordinates, curvatures, angles, covering distance from the track origin). In
the simulation platform, additional ground-truths will be generated like the object segmentation,
the road segmentation, the accurate information about the weather conditions, the observers on
pedestrians and other physical objects, and the current events.

Figure 6: Functional architecture of the Bus Station Automated Desert Service implemented in RTMaps environ-
ment (Source UGE).

7

[L2.9] Final POCs

2.1.2 Design Domain

The section intends to discuss the definition of the ODD, OEDR, and main requirements
about BuSAS. For more detail, it is recommended to read the deliverable 8.12 where a section
is fully focused on the application of PRISSMA’s taxonomy in order to generate the detailed
ODD for BuSAS.

The tested system in the framework of the POC BuSAS should at least cover the following
Operational Domain:

• Urban area

• Narrowing / narrow roads

• Ego speed range up to 20 kph

• Fluid and congested traffic conditions

• Roadway edges & markings : all possible in urban

• Signage : all traffic signs/road markings/traffic lights in urban

• Objects : all mobile objects in urban (non-classified/classified)

• Large/small static objects

• All weather (i.e light/intense rain) & light (day/night) conditions

Nevertheless, in this POC, the OD will be limited to the Satory’s test track. Of course, in the
simulation platform, features and furnitures will be added. It is important to highlight that in
nominal conditions, the test track is fully involved in the ODD of the tested system.

2.1.2.1 Functional capacities of the system under test

The following description is an adaptation of the ADS Tactical and Operational Manoeuvres
proposed by NHTSA.

8

[L2.9] Final POCs

ODD description and constraints
Tactical and
Operational
Manoeuvre

Covered Remark ID

Parking Out of ODD Not in the PoC scope NA

Stop on bus station Yes Action started when the vehicle is in the stopping zone indicated by a spe-
cific marking (to be defined) and a speed of 0km/h. Activation of the park-
ing brake. Stop for a fixed period + event

FC 01

Docking of the bus
station

yes Longitudinal and lateral profile modifications (speed and lateral distance).
Convergence: stopping zone signaled on the ground (stopping criterion).
The stopping zone is to the right of the traffic lane

FC 02

Restarting the shuttle
after stopping at a sta-
tion

Yes Do not restart if an obstacle (vulnerable or non-vulnerable) is present on the
restart path of the vehicle or intersecting an obstacle vehicle path (vehicle
arriving from behind). Activate turn signal. Release the parking brake.

FC 03

Maintain speed yes NA FC 04

Car following yes If a moving vehicle is present in the traffic lane, the speed and distance are
adapted to guarantee safety.

FC 05

Vulnerable user fol-
lowing

yes If a vulnerable mobile is present in the traffic lane, the speed and the distance
are adapted to guarantee safety.

FC 06

Lane centring yes In nominal traffic mode, the vehicle remains in the centre of its lane. He
does not make a lane change and he does not try to overtake in his lane.

FC 07

Lane switching / over-
taking

Out of ODD see requirements NA

Enhancing visibility Yes To be defined (specific marking or template or sign: experimental Vehicle,
flashing-ligth, LED, . . .)

FC 08

Obstacle avoidance Yes For an obstacle with acceptable dynamics, the vehicle will anticipate arrival
at the obstacle and will apply “comfort” braking at a TTC of 2s (then fol-
lowing manoeuvre if possible). In the event of risky and sudden behaviour
by the obstacle (sudden braking and/or reversing manoeuvre), the vehicle
will apply emergency braking. If the vehicle is stationary and the obstacle
continues to reverse then we are out of ODD.

FC 09

Low-speed merge Out of ODD NA NA

High-speed merge Out of ODD NA NA

Navigate on/off ramps Out of ODD NA NA

Right of way deci-
sions

Out of ODD NA NA

Navigate round-about Out of ODD NA NA

Navigate intersection Yes Traffic lights FC 10

Navigate working
zone

Out of ODD NA NA

N-point turn Out of ODD NA NA

U turn Out of ODD NA NA

Route planning Limited One route. No other choice. Single lane route (bus lane). Signaling of
the route by continuous and discontinuous markings, and a sidewalk on the
right.

FC 11

About the ODD and the application of ODD to the developed service under test, a set of
requirements has been identified:

• Requirement 1: For the moment, we do not take into account the opening of the doors,
the closing of the doors, the signalling (alert) of starting the vehicle.

• Requirement 2 : Do not restart if an obstacle (vulnerable or non-vulnerable) is present
in the vehicle’s restart path.

9

[L2.9] Final POCs

• Requirement 3 : The vehicle moves on the bus lane (always the same lane).

• Requirement 4 : No overtaking manoeuvre. The vehicle always stays on the same lane
(bus/bike lane). The vehicle is using the far right lane.

• Requirement 5 : The road surface and road material conditions are: asphalt, cobblestone,
concrete. No snowy surface. For the paved road, it is possible to take into account
the vibration of the tires and the shock absorbers. Taking into account the pavement
roughness and high frequencies produced by the pavement. These vibrations have an
impact on both the vehicle and the sensor behaviour.

• Requirement 6 : The types of users that the vehicle may encounter: car, bus, scooter,
motorcycle, bicycle, pedestrian, van (i.e. moving company, delivery).

• Requirement 7 : The vehicle does not change lanes. It stays in its lane.

• Requirement 8 : The vehicle does not overtake an object in its lane.

• Requirement 9 : The vehicle can not cross the speed limit fixed to 20km/h

• Requirement 10 : The vehicle can move backward (reversing speed).

• Requirement 11 : The vehicle in nominal mode cannot apply accelerations of more than
3m/s2 and decelerations of more than 3m/s2

• Requirement 12 : In critical situation (TTC <= 1s), the vehicle must apply an emer-
gency braking (1G : 9.81m/s2)

2.1.2.2 Response mapping (OEDR) of the system under test

It is possible to accurately describe the responses that will be considered for different types
of events, as described by the NHTSA, by highlighting the events and responses outside the
ODD for this POC.

Definition of event: An event is a specific fact building a specific situation or condition for
a set of scene elements. The event is more the observation of the realisation of a configura-
tion/conjuncture with possible conditions. In fact, an event represents anything that happens in
an instant of time (frame). Therefore, any instantaneous change of state caused by an Object
or an element of the context can be defined as an Event. These changes usually cause a new
occurrence and, depending on the duration, this can be defined as a new Event or an Action.

In order to define the different types of events, we have decided to share the events in func-
tion of the concerned environment key components: obstacles, road, ego-vehicle, environment.

The following table presents the events encountering with an input from static and dynamic
physical obstacle:

10

[L2.9] Final POCs

OEDR and event description for Obstacles
Event Response Remark

Lead vehicle is decelerating Depending of the speed difference, the ego
vehicle could apply a following, decelerate,
stop

In the service deployed in this POC, the ego-
vehicle keep the right lane (no lane change,
no overtaking)

Lead vehicle is stopped The ego vehicle decelerate, stop in order to
avoid the collision or mitigate it

In the service deployed in this POC, the ego-
vehicle keep the right lane (no lane change,
no overtaking)

Lead vehicle is accelerating Depending of the speed difference, the ego
vehicle could apply a following, accelerate
up to the speed limit defined in the ODD

In the service deployed in this POC, the ego-
vehicle keep the right lane with a speed limit
(20 km/h)

Adjacent vehicle apply a cut in The ego vehicle adapts its speed in order to
respect the correct inter-distance and TTC.

NA

Adjacent vehicle encroaching The ego vehicle adapts its speed in order to
respect the correct inter-distance and TTC.

In this condition, in order to respect the
safety constraint, the ego-vehicle considers
that the adjacent vehicle is driving on the
ego-lane

Opposite vehicle encroaching The ego vehicle adapts its speed in order to
respect the correct inter-distance and TTC.
If the opposition vehicle continue its driv-
ing between to traffic lane, the ego-vehicle
is stopping

In this condition, in order to respect the
safety constraint, the ego-vehicle considers
that the opposite vehicle also is driving on
the ego-lane

Lead vehicle cutting out Depending of the speed difference, the ego
vehicle could apply an accelerate up to the
speed limit defined in the ODD

The acceleration is apply on when the lead
vehicle will reach fully the other traffic lane
without encroaching

Lead vehicle apply a parking ma-
noeuvre

The ego vehicle adapts its speed in order to
respect the correct inter-distance and TTC.
If the lead vehicle has not performed its ma-
noeuvre, then the ego-vehicle is stopping

In the service deployed in this POC, the ego-
vehicle keep the right lane (no lane change,
no overtaking)

Pedestrian is crossing the road The ego vehicle adapts its speed in order to
respect the correct inter-distance and TTC. If
the pedestrian is yet on the traffic lane under
a TTC=1s, then the ego-vehicle is stopping

In the service deployed in this POC, the ego-
vehicle keep the right lane (no lane change,
no overtaking)

Cyclist is riding on the traffic lane The ego vehicle adapts its speed in order to
respect the correct inter-distance and TTC. If
the TTC is lower or equal to 1s then the ego-
vehicle is stopping

In the service deployed in this POC, the ego-
vehicle keep the right lane (no lane change,
no overtaking)

The following table presents the events encountering with an input from the ego-vehicle:

OEDR and event description for Ego-vehicle
Event Response Remark

Ego-vehicle operating outside the
ODD

Must be defined, may be generate a request
to intervene (fallback-ready user)

Must be defined

To be define Must be defined Must be defined

To be define Must be defined Must be defined

The following table presents the events encountering with an input from the road:

11

[L2.9] Final POCs

OEDR and event description for Road
Event Response Remark

Presence of a speed bumper Must be defined Must be defined

Presence of a negative obstacle
(pothole)

Must be defined Must be defined

Pedestrian crossing way Must be defined Must be defined

Change of road marking type Must be defined Must be defined

Change of road curvature (bend) Must be defined Must be defined

Degradation of the visibility level
/ readability of road marking (soil-
ing, ...)

Must be defined Must be defined

Lack of marking sidewalk edge detection Available information (other embedded sys-
tem, HD-Map)

Disturbers on the road surface
(sand, gravel, soil, leaf, ...)

To be define Possible occlusion of marking, production of
artefact at the detection level

Speed limit sign If necessary, the ego vehicle adapts its speed
in order to respect the constraint. If the ego-
speed is under the speed limit then the ego-
vehicle keep the same behaviour

The max speed of the ego-vehicle is provided
by the ODD

The following table presents the events encountering with an input from the Environment:

OEDR and event description for Environment
Event Response Remark

Traffic light red Decelerate and stop Traffic light with red light. We have logical
information (IoT)

Traffic light orange Decelerate and stop We have the logical information about the
traffic ligth state

Traffic light green Drive with the recommended speed or apply
following maneuver. If the current maneu-
ver consists to turn right then switch on the
blinker (flashing right indicator).

We have the logical information about the
traffic light state

Traffic light black Drive and check the level of risk (detec-
tion of an obstacle close to the ego-vehicle
: TTC < 2s)

Traffic light with no lights lit or covered with
an out-of-order bag. We have the logical in-
formation about the traffic light state

Speed limit sign Apply if possible (accelerate, decelerate) If no specific instruction are asked, then the
speed limit of the automated vehicle defined
by the ODD is applied

No way sign Out of ODD Forbidden way

Rain condition depending on the intensity of the rain and the
level of visibility, the vehicle must adapt its
speed

we consider that we have this information
via a rain sensor and IoT information

Fog condition depending on the density of the fog and the
level of visibility, the vehicle must adapt its
speed

we consider that we have this information
via a fog sensor and IoT information

Light condition - Day - sunset/sun-
rise

To be define generation of dazzle

Light condition - Night switch on the head lights Autonomous mechanism activated by an em-
bedded ADAS. This system is available and
independent of the system under test

About the OEDR and the different events identified in the 4 previous tabs, a set of require-
ments has been identified:

• Requirement 13: In degraded weather conditions, the vehicle has data sources to know
the intensity of the event (rain, fog) and the visibility distance (for impacted sensors).

12

[L2.9] Final POCs

This information is therefore produced by another actor.

• Requirement 14: The vehicle lighting system is managed automatically according to the
conditions present in the environment.

• Requirement 15: The semantic state of traffic lights is considered known and available
(IoT or embedded system allowing this state to be detected). This information is therefore
produced by another actor.

2.1.3 Tests in Simulation and Expected Results

In the simulation environment, the expected results are the following:

• To define a generic and inter-operable simulation architecture and framework allowing to
replace, to add, to update tools and models (vehicles, sensors, environment, ...) needed
for specific evaluation and validation procedures with a generic method.

• To generate a set of accurate and relevant ground truth (segmentation of the environment,
observers, depth map, ...) in order to feed the evaluation and validation process.

• To develop an efficient and easy way/procedure to use scenario manager involving a clear
and scalable description of scenario generation based on a generic ODD framework.

• To propose a library of metrics (levels system, component, tool and model) and the
generic process to use it in an evaluation and validation process.

• To provide the capability to compare the real and virtual test process with the challenge
to prove the representativness of the simulation in comparison to the real-life. This task
could be done by using new metrics and scores allowing to assess the level of fidelity of
the simulated data coming from the simulated sensors.

• To develop a ViL platform with the capability to merge real and virtual data and environ-
ment

• To propose some models and ways in order to take into account degraded and adverse
conditions, failures, and cyber-attacks

• To propose a template of scenarios allowing to test specifically the performances of AI-
based systems

For the POC BuSAS, a part of these objectives and expected results are presented in the
figures 3, 4, and 8 . At this end, with the final version of the POC BuSAS, we expected to ob-
tain and to provide a fully operating ViL platform with the Top-Down design method allowing
to evaluate and validate a service/system/application/component involving IA-based system.
Unfortunately, the ViL platform is yet under development and should be operational in 2025.
Nevertheless the global architecture with all the needed functions and modules have been de-
fined and presented in the section 3 dedicated to the generic framework. Moreover, a first set
of methods and metrics have been developed by UGE in order to address the Verification and
Validation stages allowing to guarantee the performance of the models and tools used in the
evaluation/validation processes. In addition to the metrics and scores about the level of fidelity,
a classification of the tools and models capability has been proposed with 3 main levels: High
fidelity, medium fidelity, low fidelity.

13

[L2.9] Final POCs

2.2 Perimeter Definition

In the DataSets generated by UGE, a set of conditions have been defined and feed the sce-
narios. Among this conditions and their parameters, we have:

• Day conditions: rain, fog, with road reflection (wet road), with HDR images and light
effects

• Night conditions: head light without degrade weather conditions

• Sensors: disturbances on sensors

All these conditions and parameters are synthesised in the Figure 7. In this figure we see the
interactions between sensors (active and passive), the propagation channel, the energy sources
(like the sun), and the material properties. In this study mage by UGE, 4 classes of disturbers
and disturbances have been proposed. The first one is dedicated to the Atmospheric distur-
bances, the second one is focused on the material disturbers, the third one addresses the spectral
and electromagnetic disturbers, and finally the last one defines the physical particles disturbers.
In the scenario generated in PRISSMA, we have mainly focused our efforts on the last class
dedicated to the particles and more accurately on the rain and fog disturbances.

Figure 7: Classification of the type of disturbers in the propagation channel impacting the quality of the sensor
data (Source UGE).

2.2.1 Simulation Environment and generic methodology

In the POC 1, the general architecture is shared in 3 main part:

14

[L2.9] Final POCs

• The preparation and building of scenarios

• The scenario management involving the events management

• The simulation platform allowing to run scenarios and to model vehicles-environment-
sensors

• The application environment involving the system and component under test

• The recording, analysing and evaluation/validation modules

Figure 8: General architecture for simulation environment in POC 1 (called BuSAS) with link with WPs and WP2
tasks (Source UGE)

2.2.1.1 Upstream tools: prepare and build trajectories, scene, and scenarios

The first part of tools and models concerns mainly the scenario description, implementation,
management, and use. In this upstream part, a set of tools are usable and partially used. In this
tools, we can mention MOSAR from SystemX and some tools developed in University Gustave
Eiffel like ROADS (see figure 11), Grotex (see figure 10), and Path Edit (see figure 9).

15

[L2.9] Final POCs

Figure 9: Path Edit: A platform for the trajectory generation and object positioning (Source UGE)

GRoTex software ([18]) is a efficient tool allowing to generate physico-realistic road surfaces
involving road markings respected French standard. Among its functionalities, Grotex provides
a large number of degradation effects and generate a road marking mask usable as a ground
truth. If we look at the figure 10, a road texture is presented with some degradations. For
instance on the top left image, the road marking has large holes without too much wear but
a little dirty. Moreover, on the crack, the painting has not reached the bottom of the bitumen
(Uniform wear). On the rougher medium, you can clearly see the painting holes. The noise on
road marking edges is clearly visible on the zoom of the image. On the bottom left image, we
can see some holes but, above all, uniform wear which has reduced the intensity of the marking.
With this software, it is possible to re-product the similar rendering and effects observed in real
conditions on real road marking.

Figure 10: GRoTex: A generator of road texture with a set of filters to generate degraded conditions (Source UGE)

ROADS ([19]) is a software allowing to build and to update OpenDrive road network with
the capability to generate the 3D objects corresponding to the road network and usable in the
Pro-SiVIC platform. Grotex is a software with graphical environment allowing to generate road
texture with road marking and a set of possible degradation of the road marking. Path Edit

16

[L2.9] Final POCs

is more dedicated to the Satory test track and allows to generate trajectories for the vehicles
involve in the scenarios. Moreover PathEdit allows to put a set of object (road sign, traffic light,
plot, ...) in the virtual environment and to generate the Pro-SiVIC script.

Figure 11: ROADS: An OpenDrive road network builder with a mesh generator (Source UGE).

2.2.1.2 Simulation platform: Pro-SiVIC capabilities and third party software

The core of the simulation platform is provided by the Pro-SiVIC platform. This software
provide physical realistic models of sensors, of vehicle dynamics, and environment conditions
(ligth, weathers, ...). The existing sensors are similar than the ones embedded in the real pro-
totype. In the current configuration we will provide RADAR ([20], [21]), LiDAR ([22], [23]),
camera ([24]), GPS, INS, Odometry and communication means ([25],). Figure 12 presents a
set of sensor’s outputs. In the figure 8, this part is presented in the tools and models sub part
and in the top left of the architecture.

17

[L2.9] Final POCs

Figure 12: Pro-SiVIC: A dedicated simulation platform for realistic sensor simulation (Source UGE and ESI)

Figure 13: Pro-SiVIC: Sensor Simulation using Unreal Engine (Source ESI)

In order to generate the disturbances impacting the sensors and vehicle behaviour, a set of
filter has been developed. Among this filter we propose Light filter (head ligth with ligth map)
and weather condition filters like rain (rain fall and rain drops), fog, snow (snow fall). Figure
14 presents some screenshots of these light and weather filters.

18

[L2.9] Final POCs

Figure 14: Pro-SiVIC: Filters and mechanisms for the light and the atmospheric disturbances modeling, generation,
and management using mgEngine (Source UGE and ESI)

The dynamic modelling of the vehicle is done by a complex modelling involving car body,
shock absorber, wheels and tires, powertrain, and the steering wheel. The interaction of the
complex model with the ground and other objects is done by using a raytracing engine imple-
mented in the simulation engine. In order to control the vehicle and pedestrian models, several
modes are provided like ”human control”, ”trajectory following”, ”control/command”, ”control
from RTMaps”. Moreover, for a great density of vehicle, it is possible to use the coupling/in-
terconnection of Symuvia (traffic generator) and Pro-SiVIC. This coupling is done using DDsL
and the OpenDrive modeling of the Satory’s test track. In this configuration, it will be possible
to manage in real time up to 500 vehicles.

19

[L2.9] Final POCs

Figure 15: Pro-SiVIC: Existing interfaces and peripherals controllers (Source UGE)

Figure 16: Dynamic model of vehicles in Pro-SiVIC (Source UGE)

In order to develop similar experimental plan in real and virtual conditions, a Digital Model
of the Satory’s test tracks has been developed. This Digital Model and the 2 other ones (Trans-
polis and Paris2Connect) will be presented in the section dedicated to the generic methodology
allowing to generate the Digital Models. The figure 17 present a set of additional Digital Models
build and implemented in Pro-SIVIC.

20

[L2.9] Final POCs

Figure 17: Some other Digital Models implemented in Pro-SiVIC. The left DM represent a generic city centre
with the main meetable intersections. The screen shot in the centre provides some view of the centre of Brisbane
(Australia). The pictures in the right part provide a part of the main road located in Bouguenais (near Nantes).
(Source UGE).

2.2.1.3 The application environment included the system and components under test

In order to implement the full system under test, we use the RTMaps software. Initially,
RTMaps has been developed to manage, record, and replay data flow coming from sensors.
Added to this initial functions, a mechanism has been implemented in order to develop its own
packages. A packages is similar to a DLL with a set of included modules. Each module is built
from a generic template made from MACRO (management and definition of inputs, outputs,
properties, actions) and methods (birth, death, core). The implemented code is in C or C++.
In the work window, it is possible to build complex diagram with a set of module given a full
system. All the data handle in RTMaps are timestamped. A set of generic packages are avail-
able. These packages concern the play and record function, the sensor drivers, the information
display (image viewer, data viewer, and oscilloscope). Added to these packages, we have devel-
oped a specific package allowing the interconnection between Pro-SiVIC and RTMaps in both
direction in order to get the sensors/observers data and in order to send vehicle orders, object
control, and events. RTMaps has been used both in the real prototype (ImPACT 3D VA: Renault
Zoé) and in the simulation platform (ImPACT 3D VR&Motion). In this efficient environment
and in this context, we will use the same application codes and the same type of sensors data.
So the comparison between real and virtual test case will be easy and representative.

This environment allows to process and to merge data in real time and provide an efficient
environment for the prototyping and first test of an application. Moreover data processing can be
performed in real time or during a playback session. Each RTMaps component embeds its own
functionalities and settings. The RTMaps engine deals with data flow between the components
and multi-threading management.

RTMaps also allows the operation of distributed and synchronised platform on several ma-
chines. A ”master” system manages the whole application. A single clock supervises and
synchronises those of the various ”slaves”. The ”Master” clock can be the one of the ”master”
host or coming from an external source: clock of an acquisition board, GPS clock or Pro-SiVIC
(see figure 20). RTMaps technology is independent of the used OS, even in a distributed con-

21

[L2.9] Final POCs

figuration.
Pro-SiVIC platform has been interconnected with RTMaps in order to generate sequences of

virtual data homogeneous with the real data processed on the vehicle. With this architecture,
the algorithms used on the vehicle and with Pro-SiVIC are strictly the same ones. This is
very interesting in the stages of driving assistance systems evaluation with particular conditions
and with some very long or numerous scenarios. Moreover, the ADAS algorithms used in
RTMaps are exactly the same when working with either real data (acquired on real vehicles), or
simulated data coming from Pro-SiVIC. This approach drastically decreases the translation and
adaptation stages between the simulated and the embedded algorithms. Furthermore, this global
architecture (Pro-SiVIC and RTMaps) allows to build “reference scenarios” and constitutes an
efficient platform for the tests and the validations of the embedded algorithms. The figure 18
shows a full application for driving automation with modules dedicated to the perception, the
decision and path planning, and the control. This diagram use the replay of a sensor data-set.

RTMaps is not the only way to implement and to record data. It is also possible to interface
Pro-SiVIC with ROS or a other third-part application.

In the current POC BuSAS, we will use the last version of RTMaps (4.8) in real and virtual
prototypes.

Figure 18: Example of full driving automation application in a RTMaps diagram with models for Perception/De-
cision/Action (Source UGE).

2.2.1.4 The recording, analysing and evaluation/validation modules

Several way are available to record the data with an accurate timestamping. The first solution
consists to use the RTMaps recorder. This recorder allows the simultaneous recording of various
tracks of information. Information is stored in STDB, Synchronised Time stamped DataBases.
When replayed, the sequence is reproduced identically thanks to the data timestamps. It is
possible to play information at the desired speed: accelerated, slowed down, step by step. The
data can be recorded in different format (bin, matlab, ...). These record and replay functions are
well done for the DataSet generation and the offline analysing of data. The second way is to
use the Record mode in Pro-SiVIC in order to generate CSV files for the observers. The record
of images can be done with a set of different formats and resolutions. The third way consists to
use the interface libraries in third-part software like ROS or a proprietary application. The last

22

[L2.9] Final POCs

way consist to use the MATLAB mode in Pro-SiVIC in order to send the data toward Matlab.
In this context, the data could be recording and/or plotted in Matlab.

Figure 19: DDS and DDsL, a generic library for tools and softwares interfacing (Source UGE).

2.2.1.5 Leveraging distributed test system environment with U-TEST

Continuing the work conducted during the definition of a logical architecture for distributed
test and simulation systems (see deliverable 2.4 PRELIMINARY DEFINITION OF INTER-
FACES AND SIMULATION ENVIRONMENT), we instantiated a platform with U-TEST and
the CARLA simulator, as well as a gateway for interfacing Pro-SiVIC via the DDS standard.

Figure 20: SPHEREA U-TEST integration with Carla and Pro-SiVIC through DDS

The two communication models of U-TEST VS, base on EPICS, and DDS differs in many
aspects:

23

[L2.9] Final POCs

• Data Model:

– DDS: Publisher/Subscriber model transferring complete data trees.

– EPICS (U-TEST VS): Broadcast model focusing on scalar data.

• Quality of Service:

– DDS: Offers multiple quality of service options to ensure data validity.

– EPICS: Lacks these specific quality of service controls, focusing instead on real-
time performance.

• Integration Complexity:

– DDS: Requires case-by-case mapping for integration with EPICS-based systems.

– EPICS: Typically simpler within its own ecosystem but more challenging when
integrating with DDS.

• Scalability and Flexibility:

– DDS: More scalable and flexible due to its robust data model and quality of service
features.

– EPICS: Generally less flexible outside its native environment, with scalability pri-
marily focused on real-time constraints.

• Use Case Suitability:

– DDS: Better suited for complex, heterogeneous environments requiring rigorous
data integrity.

– EPICS: Optimal for real-time applications within homogeneous systems where
simplicity and speed are crucial.

The main challenges of this integration are related to the differences in the data models of
U-TEST VS and Pro-Sivic DDS. DDS operates on a publisher/subscriber model that allows for
the transfer of complete data trees, with various qualities of service ensuring the validity of the
received data. In contrast, the U-TEST VS exchange bus is based on a broadcast model of scalar
data, rather than a publish/subscribe model of data trees like DDS.

Mapping the two data models between DDS and U-TEST VS must be done on a case-by-
case basis, depending on the DDS domain. This integration of the two functional domains is
challenging and requires extensive testing with each model evolution. The work carried out
under the PRISSMA project did not demonstrate the relevance of using a gateway between
U-TEST VS and DDS. The benefits, compared to dedicated integration without using DDS,
have not been clearly established. Significant modifications to the U-TEST VS stack would be
necessary to enable proper integration of these data exchange buses.

24

[L2.9] Final POCs

2.2.2 Real-World Testing Conditions

In the framework of the development of the XiL platform (ViL, HiL, MiL, SiL) called Im-
PACT 3D, a real live analogous tests facility call ImPACT 3D AV has been developed. This
facility consist to a Renault Zoé fully equipped with embedded hardware and software envi-
ronment, an adapted power supply system, a low level architecture for actuators control, and a
large set of embedded sensors. In 2024, an OBU (On Board Unit for communication) will be
implemented in this vehicle. At the end, this ImPACT 3D AV platform will allow to implement
L2, L3, and L4 services for automated driving and communication functions for cooperative
application and CAV development.

2.2.2.1 Topology of sensors in the Renault Zoé

Figure 21: Sensor topology in both real and virtual Renault Zoé in ImPACT 3D (Source UGE).

Figure 22: Embedded architecture in the real Renault Zoé called ImPACT 3D VA (Source UGE).

25

[L2.9] Final POCs

The Full prototype workflows is made of different layers. The fist one concerns the sensors
layer:

• stereovision PointGrey cameras,

• SICK LiDAR with 4 layers (SICK LD-MRS400001S01),

• A Continental RADAR ARS300,

• An INS sensor with accelerometers and gyrometers

• A natural GPS and a RTK GPS

• A neuromorphic camera (event camera)

• A LiDAR OS1 Ouster 64 layers Lidar.

These sensors are connected to the Windows PC through CAN, ethernet and serial interfaces.
The other layers are ADSF, software and interface:

• Car embedded computer (Windows 10): hosting ADSF under RTMaps software and com-
munication platform with ROS computer. Under RTMaps, data from sensors, ADSF, and
actuators are processing, recorded and synchronised.

• ROS Linux computer: This computer is mage for low level actuator control.

The last layer is dedicated to the actuators with acceleration and braking pedals, and steering
wheel. Moreover, in order to provide information about road marking and to help the vehicle
in the lane keeping function, the vehicle can use an HD Maps involving accurate attributes of
the road markings and road geometry. This HD Map is obtain either with an OpenDrive file or
a trk file. These files are used both in the simulation platform and in the actual prototype. Also,
these files are useful for the path planning and trajectory following modules. The OpenDrive
file is also used in Symuvia in order to generate different conditions of traffic.

2.2.2.2 Sensor strategy

Sensor deployment is application-specific, with different sensors required for tasks such as
parking, braking, steering, lane change, takeover, active cruise control, city driving, and high-
way driving. There are four key areas to consider when defining a sensor strategy: cost, weight,
performance, and size. These differ according to whether the vehicle operates at L1, L2 or
L3. There are then also numerous technology considerations, including life-cycle of capability,
maintenance, and installation of sensors. Another important factor is the technology maturity.
Despite a growing number of applications for LiDAR sensors, the technology is still in its in-
fancy, with a number of issues still to be resolved, including beam steering, laser technology,
and receiver technology. Suppliers are reliant on OEMs to provide guidance on requirements,
and these vary according to application, with differences between ADAS and AV requirements.

26

[L2.9] Final POCs

2.2.3 Choice of Artificial Intelligence Algorithm

The choice of the algorithms is subject to the Operation Definition Domain as it is described
in the ODD subsection 2.1.2. The shuttle service must safely run in a two-lane road without
overtaking and stopping when an obstacle is too close. The vehicle must also stop at bus stops
to receive shuttle users. To achieve all this safely, the perception of the environment is essential.
Thus, the capabilities of perception should be as follows:

• lane-marking detection in order the keep the lane when the shuttle is moving,

• dynamic and static obstacles detection (classification+ accurate positioning) in order to
stop for the collision avoidance,

• and the bus-stops detection in order to engage the shuttle docking.

In the proposed autonomous shuttle system, the perception abilities are ensured by the LiDAR
and camera sensors. And finally, the shuttle autonomous system calls the path planning algo-
rithm to decide how to move in the perceived environment.

The object detection task mainly includes detecting whether there is an object of inter-
est, classifying the object semantics, locating the object position, and determining the space
range occupied by the object. Object detection is a classic task in the perception module of
autonomous driving systems, where the common application is in two-dimensional RGB im-
ages. There are many kinds of automated vehicle sensors, and object detection based on LiDAR,
millimeter-wave radar or ultrasonic radar is also essential. Object detection tasks can be divided
into road participant detection (including vehicles, pedestrians, non-motor vehicles, etc, as in
Figure 24(a)), traffic sign detection (including road boundary lines, lanes, traffic signs, cones,
etc, as in Figure 24(b)), and general obstacle detection. Driving in public transportation spaces,
autonomous vehicles can coexist harmoniously with other traffic participants, and friendly in-
teraction is the premise and necessary condition for the realization of advanced autonomous
vehicles. Therefore, it is particularly important to detect and identify objects such as pedestri-
ans and vehicles in real-time during the driving process and even track and predict their moving
trajectories, which contributes to understanding their driving intentions and making appropriate
actions such as yielding, changing lanes, and overtaking.

Figure 23: POC1, a simple overview of the functional architecture of the bus station autonomous desert service
(Source UGE and ESI).

27

[L2.9] Final POCs

(a) Road participants (b) Lanes

Figure 24: Applications of object detection tasks

2.2.3.1 YOLOv5 in Object Detection

Object detection can be divided into two categories in general: one is the detection task
of detecting the presence or absence of the target; another is the regression task of accurately
returning the object detection frame. The classic deep learning models of object detection
algorithms based on images are divided into two categories as shown by the object detection
algorithms milestones [2] in Figure 25:

Figure 25: Milestones of Object Detection Algorithm [2]

• Two-stage model: firstly generate candidate regions, then classify these candidate boxes,
and return the detection boxes. Generally, this kind of algorithm has a large amount of
calculation but high accuracy, and the representative algorithms include sliding window
detection [26], R-CNN [27], Fast R-CNN [28], and Faster R-CNN [29];

• One-stage model: evenly perform dense sampling in the image, and then directly per-
form classification and regression. This method is more efficient, and the representative

28

[L2.9] Final POCs

algorithms include YOLO[30] and SSD [31].

YOLO is the pioneer of the single-stage approach. It formulates the detection task as a unified,
end-to-end regression problem, and is named after processing an image only once to obtain both
location and classification. YOLO completes the prediction of bounding boxes and categories
of all objects in the image in one network model, avoiding spending a lot of time generating can-
didate regions. Its strengths are detection speed and recognition, rather than perfectly locating
objects.

Unlike object recognition algorithms, object detection algorithms not only need to predict
the class label of the object but also need to provide the location of the detected object. The
YOLO algorithm uses a fully convolutional neural network for the entire image, divides the
image into multiple grid regions, and predicts the bounding box and probability of the target in
each region, and the predicted probability of the target is then used to determine the accuracy
of the bounding box. weighted to obtain accurate bounding box location and size.

There are a large number of real-life scenarios where autonomous vehicles must detect the
location of all objects around them in real-time in order for the system to make correct decisions
and controls. The YOLO algorithm can quickly locate and classify different objects and have a
bounding box and corresponding classification label around each object.

YOLO model [30, 32, 33, 34, 4] has been updated with 5 versions, namely from V1 to V5.
YOLOv5 [4] (Overall architecture is in Figure 26), a family of object detection architectures
and models pre-trained on the COCO dataset, represents Ultralytics’ open-source research into
future vision AI approaches, incorporating lessons learned and best practices developed over
thousands of hours of research and development practice. In the official version of YOLOv5,
there are four object detection networks given, namely five models: YOLOv5n [4], YOLOv5s
[4], YOLOv5m [4], YOLOv5l [4], and YOLOv5x [4].

The performance of these models is shown in Figure 27. From YOLOv5n to YOLOv5x,
the detection accuracy of these models gradually increased, and the detection speed gradually
decreased. There is a trade-off between the speed and accuracy of neural networks, and Effi-
cientDet is a general term, which can be divided into EfficientDet D1 EfficientDet D7, the
speed gradually slows down, but the accuracy also gradually improves. Compared to these
terms, YOLOv5 not only achieves higher accuracy but also faster inference time. As a conse-
quence, we deployed YOLOv5 into our real-time simulation as the functional module for object
detection.

2.2.3.2 SORT and DeepSORT

The main task of Multiple Object Tracking (MOT) is to find the moving objects in a con-
tinuous image sequence, and identify the moving objects in different frames, that is, given an
accurate id, of course, these objects can be Arbitrary, such as pedestrians, vehicles, various
animals, etc. SORT (Simple Online and Real-time Tracking) algorithm [5] combines Kalman
Filter and Hungarian algorithm, for the object motion state estimation and position matching
respectively. As its name suggests, SORT is simple and can meet real-time requirements. On
the one hand, its principle is simple and easy to implement; on the other hand, its speed is ex-
tremely fast, and it can reach 260HZ on the configuration of Intel i7 2.5GHZ/16GB (excluding
the target detection time). At the same time, due to the introduction of object detection technol-
ogy, the accuracy of tracking is also greatly improved, which can be said to be a good trade-off
between accuracy and speed(as in Figure 28).

29

[L2.9] Final POCs

Figure 26: Overall architecture of YOLOv5 model [3]

The SORT algorithm uses the Kalman filter algorithm to predict the state of the detection
frame in the next frame and matches the state with the detection result of the next frame to
achieve vehicle tracking. However, once the object is occluded or not detected for other reasons,
the state information predicted by the Kalman filter will not be able to match the detection
result, and the tracking segment will end prematurely. After the occlusion is over, vehicle
detection may continue to be performed, so SORT can only assign a new ID number to the
object, representing the beginning of a new tracking segment. Therefore, the disadvantage
of SORT is that it is greatly affected by occlusion and other conditions, and there will be a
large number of ID switching. In order to overcome this problem, DeepSORT uses a simple
(small amount of computation) CNN to extract the appearance features (low-dimensional vector
representation) of the detected object (in the detection frame object), and after each (each frame)
detection + tracking, the object is performed once extraction and preservation of appearance
features. In each subsequent step, the similarity calculation between the appearance feature
of the detected object in the current frame and the appearance feature stored before must be
performed, and this similarity will be used as an important discriminant basis.

Due to the inherent strength (above-mentioned) of SORT and the improvement of the ID-
switching problem, we employed DeepSORT [35] as our tracking algorithm, whose inputs are
fed by the YOLOv5.

30

[L2.9] Final POCs

Figure 27: Performance of YOLOv5 on COCO dataset [4]

2.2.3.3 Ultra-Fast-Lane-Detection in Lane Detection

The lane detection algorithms can be divided into two categories: lane detection algorithms
based on traditional image processing and lane detection algorithms based on deep learning
processing.

In the first category, the lane area is always detected by edge detection, filtering, and other
methods, and then combined with Hough transform [36], RANSAC [37], and other algorithms
for lane detection, which suffer from the limitations:

• Limited application scenarios: Hough line detection algorithm is accurate but cannot
perform curve detection, the fitting method can detect curves but is unstable, affine trans-
formation can be used for multi-lane detection but serious interference in the case of
occlusion, and so on.

• The perspective transformation operation will have some specific requirements on the
camera. The image needs to be adjusted before transformation, and the installation of the
camera and the inclination of the road itself will affect the transformation effect.

At present, the methods based on deep learning have become the current mainstream due to
their high accuracy. As a fundamental component of autonomous driving, the lane detection
algorithm is heavily executed. This requires an extremely low computational cost of lane de-
tection. Besides, present autonomous driving solutions are commonly equipped with multiple
camera inputs, which typically demand lower computational costs for every camera input. An-
other important problem occurs when the detection is based on scenarios with severe occlusion
and extreme lighting conditions, which urgently needs a higher-level semantic analysis of lanes.
Deep segmentation methods naturally have stronger semantic representation ability than con-
ventional image processing methods and become mainstream.

As a consequence, we employed an Ultra-Fast-Lane-Detection detection algorithm [6] (over-
all architecture is shown in Figure 29), which is able to achieve SOTA-level performance while
maintaining ultra-high detection speed. The lightweight version can achieve a detection speed
of 300+FPS with close to SOTA performance. The model defined Lane detection as a set of

31

[L2.9] Final POCs

Figure 28: Benchmark performance of SORT [5]

finding the positions of lanes in certain rows in the image, that is, based on the position se-
lection and classification in the row direction, as shown in Figure 30. Therefore, the method
reduces the computational complexity to a very small range, solves the problem of slow seg-
mentation, and greatly accelerates the process of lane detection. Besides, since the method is
not a fully convolutional form of segmentation, but a general fully connected layer-based clas-
sification, the features it uses are global features. This directly solves the problem that comes
from the difficulty in detecting complex lanes caused by a small local receptive field. For this
method, when detecting the position of the lane line of a certain row, the receptive field is the
size of the full image.

Figure 30: Definition of Lane Detection [6]

32

[L2.9] Final POCs

Figure 29: Overall architecture of Ultra-Fast-Lane-Detection model [6]

2.2.3.4 TensorRT for acceleration

NVIDIA TensorRT is an SDK for deep learning inference [7]. TensorRT provides APIs
and parsers to import trained models from all major deep learning frameworks. Then generate
optimized runtime engines that can be deployed in the data centers, automotive, and embedded
environments as shown in Figure 31.

Figure 31: Deployment of TensorRT [7]

In the implementation part, we convert the PyTorch Trained model(YOLOv5, YOLOv5 with
DeepSORT, and Ultra-Fast-Lane-Detection) to ONNX format as input and populated with a
network object in TensorRT, which are used to generate the corresponding engines optimised
for our platform.

33

[L2.9] Final POCs

2.2.3.5 Architecture

It is important to note that the virtual Co-Pilot (ADS) was prototyped and developed using
the PROSIVIC platform (ESI group), coupled with the RTMaps platform (Intempora). Pro-
SiVIC (presented in Figure 32) is a 3D simulation software designed for autonomous vehicle
prototyping, test, evaluation, and validation: it features complex environments, realistic mod-
elling of the vehicles, and of all the embedded sensors (cameras, radars, lidars). RTMaps is a
data processing platform that controls the car and does all the trajectory computations, either in
simulation (when connected to Pro-SiVIC) or in the field (when implemented on a real vehicle).

Figure 32: Pro-SiVIC, a generic and physically realistic simulation platform for sensors, vehicles, and the envi-
ronment. Right: Co-Pilot application (Source UGE and ESI).

Figure 33: Architecture in RTMaps (Source UGE).

We implement the above-mentioned algorithms as the functional module inside the virtual
Co-Pilot (ADS), as shown in Figure 33. YOLOv5 and DeepSort are coupled inside the Object
Detection module, where YOLOv5 can work independently or combined with DeepSORT. In
addition, Ultra-Fast-Lane-Detection is implemented in the Lane Detection module. Both mod-
ules take the image sequences (pixel size of 640x480) as the input during the simulation, and

34

[L2.9] Final POCs

output the visual and digital results, where the detected objects, Lane, and trackings are marked
(as Figure 34 and 35), and the corresponding structured data is recorded.

Figure 34: Object detection with tracking applied in virtual Co-Pilot (Source UGE).

Figure 35: Lane detection applied in virtual Co-Pilot (Source UGE).

2.3 Proposal of a generic multi-modal framework

In PRISSMA and with Pro-SIVIC, we have proposed, in the POC BuSAS, to develop a multi-
modal generic framework based on 3 sub frameworks: the framework Software, the framework
Scenario, and the framework DataSet. The framework Software provides the 4 main set of
tools and models to implement for the development of a simulation architecture (see Figure 8.
The second framework Scenario involves 3 layers: the definition and generation, the execution,
and the analysis of scenario (See Figure 36). Finally, the last framework DataSet gives the
way to generate the DataSet needed to obtain the data and ground truth which will be used by
the evaluation process. This third framework involves the Dataset configuration, the Dataset
generation, and the Dataset post-processing (see Figure 38). This global framework is called
SiVIC-ADVeRSce. In both framework Scenario, and the framework DataSet, the ground truth
identification, configuration, generation, and using are essential stages in both the DataSets
production and the evaluation and validation stage. This generation of the ground truth will be
addressed in the section 2.3.2. The following sections provide more details about these generic
framework used in PRISSMA to implement the POC BuSAS.

35

[L2.9] Final POCs

2.3.1 General framework for scenario management

Figure 36: Generic Conceptual Framework of SiVIC-ADVeRSce: The scenario definition, management, execution
(Source UGE)

2.3.1.1 The Scenario Generator

The generator is crucial in building the framework, generating necessary configurations, and
selecting algorithms for evaluation. As demonstrated in Algorithm 1, it is responsible for gen-
erating configurations of evaluation scenarios based on Operational Design Domain (ODD) and
Object and Event Detection and Response (OEDR). It also selects candidates of AI algorithms
for the framework according to specific objectives, then evaluates and validates them based on a
representative real-world dataset. Moreover, the generator component generates the configura-
tion of the ground truth for the executor based on the selected algorithms, ensuring the accuracy
and reliability of the evaluation process.

Algorithm 1 GENERATOR
1: procedure GENERATE ▷ S: system, E: environment
2: ODD , OEDR , Objs← DEFINE(S , E) ▷ Define ODD, OEDR, and also objectives Objs
3: SC ← CONFIGURE(ODD , OEDR) ▷ Generate configurations of scenarios SC
4: ACs← GENERATE(Objs) ▷ Generate adverse conditions ACs
5: As← SELECT(Objs , Dataset) ▷ Select the algorithms As based on objectives Objs, also the dataset
6: GTC ← CONFIGURE(Objs , S , E , As) ▷ Generate configurations of ground truth GTC
7: return SC, GTC, Objs, As ▷ Return configurations, objectives, adverse conditions, and selected

algorithms
8: end procedure

Evaluation objectives
The evaluation objectives of an AI-powered system in ADS are derived from an analysis of the
system and its operating environment. These objectives encompass multiple levels:

• 1) At the system level, the overall performance and quality of the AI system are evaluated
in simulated environments;

• 2) The components/functionalities level focuses on evaluating specific functions and al-
gorithms necessary to meet the expected functionalities of the system;

36

[L2.9] Final POCs

• 3) Additionally, the scenarios level evaluates the system’s capabilities within a defined
ODD, including safe driving in different scenarios under varying conditions like non-
optimal weather, traffic, and lighting.

Categorising the evaluation objectives into these levels facilitates a comprehensive evaluation
of the system’s performance, safety, and areas for improvement, offering valuable insights into
its capabilities and limitations.

Scenario Definition and Configuration
Scenario Definition

The scenario definition involves the conceptualisation and specification of the fundamental ele-
ments:

• Scene contains the overall environment where the scene takes place, including 1) Dy-
namic elements which are objects capable of movement or state changes, such as vehi-
cles, pedestrians, or cyclists; 2) Static elements, which are stationary objects in the scene,
such as road infrastructure or buildings; 3) Environment factors, which refers to the sur-
rounding conditions, such as weather or lighting, which can influence the behaviour of
dynamic elements.

• Event represents incidents or occurrences that unfold during the scenario. These events
can be pre-defined or dynamically generated and contribute to the scenario’s progression.
They include stimuli, triggers, or changes in the environment or state change of other
objects (outside ego), shaping the sequence of actions and reactions within the scenario.

• Action pertains to the response or behaviour exhibited by the ego object in the scenario. It
demonstrates how the ego object in the scene reacts to events or encountered conditions.
Actions may include acceleration, braking, or changes in the direction of the ego vehicle.

• Criteria refers to the specific conditions or standards required for the simulation sce-
nario to be deemed complete or successful. These criteria could include factors such as
reaching a particular time limit, accomplishing predefined objectives, meeting specific
performance metrics, satisfying safety requirements, or any other relevant measures that
define the desired conclusion of the scenario.

Scenario Configuration
The scenario configuration involves the implementation and customisation of a scenario based
on the definition. This process focuses on the detailed setup and arrangement of specific ele-
ments, conditions, and variables within the scenario. An effective scenario configuration should
be done within the defined boundaries of ODD and OEDR.

ODD contains the specific operating conditions and environments within which ADS is in-
tended to function safely and effectively. By considering the ODD in the scenario configura-
tion, the scenarios accurately reflect the real-world conditions that the system is designed to
encounter. This involves defining geographic boundaries, traffic conditions, and factors that
influence the system’s operational limits, thus ensuring the scenario’s relevance and accuracy.

OEDR focuses on the system’s ability to detect and respond to specific objects and events
within its operational environment. When configuring scenarios, it is imperative to define the
types of objects the system should detect. Furthermore, the scenario should include events that

37

[L2.9] Final POCs

the system should recognise and respond to, such as sudden lane changes, emergency brak-
ing, or any other relevant mapping. By incorporating these elements, the scenario enables the
evaluation and improvement of the system’s perception and response capabilities.

By aligning scenario configuration with the ODD and OEDR, the resulting simulations ac-
curately represent the operating boundary and allow for a comprehensive evaluation of ADS.

Algorithms selection
To select algorithm candidates for an AI-powered system, it is essential to establish the

domain of AI first. In the case of a visual perception system, deep learning methods like Con-
volutional Neural Networks (CNNs) have demonstrated promising results and are commonly
used for image detection and segmentation tasks.

Once the domain is determined, specific tasks should be extracted based on the system’s ob-
jectives. After an extensive investigation of algorithms suitable for these tasks within the chosen
AI domain, potential candidates can be identified. These candidates will undergo training using
relevant datasets, and if possible, the models will be fine-tuned. Subsequently, the performance
of the trained models will be validated to ensure they meet the necessary criteria for further
consideration.

Ground truth selection
In real-world environments, ground truth can be generated through manual annotation or by

using calibrated and accurate sensors or devices to capture the actual values of the variables
being measured. For example, the BDD100k dataset [38] has been widely used in visual per-
ception research [39, 40] and provides ground truth labels for various tasks as shown in Fig.
37a. In the proposed framework, this type of ground truth is used for training and preliminary
validation of the selected algorithm.

(a) BDD (b) Pro-SiVICTM

Figure 37: Ground truth of visual perception from the real world and simulation

In the simulation framework, the selection and configuration of the ground truth are based
on the chosen algorithms and the characteristics of the environment. Ground truth data can be
generated by using a physics engine to model the behaviour of the vehicle and its interaction
with the environment, Fig. 37b shows the different ground truth for visual perception tasks in
Pro-SiVICTM. The ground truth generated by the simulator will be collected by the executor
and used for the final evaluation process.

2.3.1.2 The Scenario Executor

Execution process
The executor is responsible for executing the different test cases on the integrated platform

38

[L2.9] Final POCs

and tools, which are built by the output from the generator component of the framework, and
also generating different types of results. The module must ensure that the system is executing
properly and that the intermediate results are being generated correctly, and then passed back
to the generator component as feedback. This process aims to refine the parameters inside the
configuration of scenarios and adjust ODD or OEDR if needed.

If there are any issues or errors in the execution, it needs to be resolved before passing on
the final results to the evaluator component. Once the execution is complete, the final results
are passed to the evaluator component for assessment against the different types of evaluation
metrics.

The process of executor is expressed by the Algorithm 2.

Algorithm 2 EXECUTOR
1: procedure EXECUTE(SC, As, GTC, ACs) ▷ Outputs from generator as inputs of executor
2: Ts← BUILD(As , ACs) ▷ Build the test cases with different algorithms As and adverse conditions ACs
3: for Ti ∈ Ts do
4: SI , EI ← INSTANTIATE(S with Ai in Ti , E with SC , P) ▷ Instantiate the system SI with

algorithm Ai in test case Ti and environment EI with scenario configuration SC on the integrated platform
P

5: TaTi ← T.GENERATE(ST
i , ACi in Ti) ▷ Generate the test action TaTi based on the environment

state ST
i and the adverse condition ACi in the test case Ti

6: SaTi ← S.GENERATE(ObsTi) ▷ Generate system action SaTi based on the observation ObsTi
7: ST

i , ObsTi ← E.UPDATE(TaTi , SaTi) ▷ Environment updates based on system actions SaTi and test
actions TaTi

8: end for
9: GTs , Rs← P.GENRATE(Obs , GTC) ▷ P records final results Rs and ground truth GTs (based on

ground truth configuration GTC) from the observer Obs
10: return Rs, GTs ▷ Return final results and the ground truth
11: end procedure

Integration with tools and platforms
Integrating the evaluation framework with appropriate tools and platforms is crucial for the

executor component to effectively perform its tasks. Fig. 8 illustrates a case of integration of
two interconnected software, RTMapsTM and Pro-SiVICTM in our framework. By utilising the
capabilities of Pro-SiVICTM to design realistic and complex virtual environments, developers
can simulate various road, traffic, and weather conditions that their systems might encounter.
Meanwhile, RTMapsTM provides a module-based environment to design different sub-systems
for ADS, and also has real-time multi-sensor processing and data fusion capabilities to enable
the effective management of sensor data. Besides, it also has the capability to record and replay
the data from the observer, also providing an efficient means for the evaluation process.

As shown in Fig. 8, it is worth mentioning that the Data Distribution Service (DDS) as the
communication mechanism is integrated within the evaluation framework, which offers an ef-
fective and interoperable Application Programming Interface (API) for seamless data sharing
and communication among the various components. It contributes to enhancing the frame-
work’s overall performance, scalability, and effectiveness in the evaluation process.

2.3.1.3 The Evaluator

The evaluator is responsible for evaluating the performance of the AI-powered systems. It
applied the selected evaluation metrics to the output from the executor, and then hereby evaluate

39

[L2.9] Final POCs

the results combining corresponding ground truth. The overall process can be abstracted as
shown in Algorithm 3.

The metrics used in the framework are chosen based on the different levels inside the evalu-
ation objectives of the system, such as component level, system level, and scenario level.

Algorithm 3 EVALUATOR
1: procedure EVALUATE (Rs, GTs, Objs) ▷ Evaluates the final results with ground truth
2: LEs← LEVEL(Objs) ▷ Define different levels of Evaluation LEs
3: Metrics← Select(LEs) ▷ Select metrics for different evaluations
4: Rmetrics ← Process(Rs , GTs , Metrics) ▷ Calculate the result of metrics Rmetrics

5: return V isualize(Rmetrics), Analyze(Rmetrics) ▷ Visualise and analyse the result of metrics Rmetrics

6: end procedure

System evaluation
In order to evaluate the high-level quality of AI-powered system in ADS, such as a visual
perception system, it is necessary to implement a full mobility service and propose relevant
and representative scenarios involving an exhaustive set of conditions/configurations/situations
allowing for quantification of the performances and the quality of the service. The metrics (a
case of visual perception system) can refer to a set of specific Key Performance Indicators
(KPIs):

• Risk specific: Longitudinal and lateral distance, Time to collision (TTC), Time Exposed
Time-to-Collision (TET), Deceleration Rate to Avoid a Crash (DRAC), etc.

• Task (detection/tracking) specific: Success rate, Loss, Distance, etc.

• Time specific: Frequency, Time to detect/track, False alarm frequency.

Component evaluation
This level of evaluation focuses on the performance of individual algorithms or functions within
the AI-powered system. The metrics are typically related to the functionalities of the system, as
the metrics of the visual perception system shown in Table 1.

2.3.2 General framework for DataSets and Ground Truth generation

2.3.2.1 DataSet generation process and format

Conceptual Framework[8]

40

[L2.9] Final POCs

Table 1: Metrics cross different functionalities

Perception Function Explanation Metrics

Detection Identifying and localising ob-
jects within an image or video
frame using bounding boxes

False Positive Rate (FPR), False Negative Rate (FNR), True
Negative Rate (TNR), True Detection Rate (TDR), Accuracy,
Precision, Recall, F-Measure, Receiver Operating Characteristic
(ROC Curve), Detection Error Trade-off Curve (DET Curve),
Precision-Recall Curve (PR Curve), Average-Precision (AP),
mean Average Precision (mAP), etc.

Segmentation Partitioning an image or video
frame into regions and assigning
semantic labels to each pixel or
region

Pixel Accuracy (PA), Class Pixel Accuracy (CPA), mean Pixel
Accuracy (mPA), IoU, mean Intersection over Union (mIoU),
etc.

Tracking Following the movement and
preserving the identity of an
object or multiple objects over
time in a video sequence

Object Tracking Time delay, Identification switch(IDSW), Mul-
tiple Object Tracking Accuracy (MOTA) [41], Multiple Object
Tracking Precision (MOTP) [41], Higher Order Tracking Accu-
racy (HOTA) [11], etc.

Figure 38: Generic Conceptual Framework of SiVIC-ADVeRSce: The Dataset definition, generation, and post
processing (Source UGE)

The conceptual framework demonstrated in Figure 38 serves as the theoretical support for
implementing the synthetic dataset generation framework for visual perception in adverse sce-
narios, which is inspired and extended by [42]. It provides a structured approach comprising
three distinct layers: Dataset Configuration, Dataset Generation, and Data Post-Processing. Di-
viding the framework into sub-layers facilitates a more in-depth understanding of the whole
process, and contributes to defining essential components and their corresponding interconnec-
tions. Moreover, we further parameterise each layer into an algorithmic presentation, outlining
specific methodologies and a breakdown of the process, offering clarity on implementing its
objectives and functionalities, to systematically and comprehensively guide the generation of
synthetic datasets.

41

[L2.9] Final POCs

2.3.2.2 Upstream Layer: Dataset Configuration

Algorithm 4 DATASET CONFIGURATION
1: Input: Use Case UC, User Requirements URe
2: Output: Scenarios Configurations SCs, Model Configuration MCs, Adversarial Features AFs, Annotation

schema AS, Dataset Composition DC
3: procedure SPECIFY(UC , URe)
4: ODD , OEDR← DEFINE(UC , URe) ▷ Define and specify ODD, OEDR based on UC and URe
5: SysChs , SceChs← CHARACTERIZE(ODD , OEDR) ▷ Extract the characteristics of scenarios and

system SysChs and SceChs upon ODD and OEDR
6: SCs← STRUCT(SceChs) ▷ Struct (parameterize, specify, and configure) the key scenarios for dataset
7: AFs← BUILD(SceChs , SysChs) ▷ Build Adversarial Features AFs
8: MCs← BUILD(SysChs) ▷ Generate Model Configuration MCs
9: OAs , STs , SSps← GENERATE(SceChs , SysChs) ▷ Generate references parameters containing Objects

Attributes OAs, Scene Traits STs, Sensor Specs SSps
10: AS , DC← FORM(OAs , STs , SSps) ▷ Generate the Annotation Schema AS and Dataset Composition

DC
11: return SCs, MCs, AFs, AS, DC ▷ Return for the next generation layer
12: end procedure

The Data Configuration layer is particularly crucial for establishing the foundational param-
eters and specifications necessary for the generation phase, mainly reflecting in configuring key
scenarios, system models, ground truth, and adverse features. The main process of this layer,
demonstrated in Algorithm 4, can be summarized into the following key steps:

• Analyzing Use Cases and User Requirements
This initial step starts by thoroughly analyzing the intended use cases and users’ require-
ments for the autonomous driving perception system. The former provides crucial in-
sights into the operational contexts and environmental conditions that the system will
encounter. Meanwhile, the latter forms the foundation for defining the system’s spec-
ifications and capabilities. This analysis informs subsequent decisions throughout the
dataset configuration process, ensuring the generated datasets are relevant and valuable
for the intended applications.

• Defining ODD and OEDR
Building upon the analysis gleaned from use case analysis and user requirements, the
Operational Design Domain (ODD) defines the autonomous driving system’s operational
boundaries and environmental constraints. Incorporating ODD ensures that the synthetic
datasets accurately represent the conditions the system is designed to encounter in real-
world deployments. Meanwhile, the Object and Event Detection and Response (OEDR)
framework describes the system’s capabilities in detecting and responding to objects and
events encountered within the defined ODD. This includes specifying object detection
requirements, critical events recognition, and corresponding response strategies, which
contribute to further identifying system and scenario characteristics.

• Extracting Scenario and System Characteristics
Scenario and system characteristics are derived from the scope of ODD and OEDR. Sce-
nario characteristics encompass a broad array of scenes, events, and criteria that are
also fundamental elements of scenario definition. Meanwhile, system characteristics

42

[L2.9] Final POCs

refer to the configuration of different models, including sensor specifications, process-
ing(perception) capabilities, and response (decision-making) mechanisms. These charac-
teristics are the basis for parameterizing the configuration of datasets, so it is crucial to
ensure their accurate representation of the diverse scenarios and systems specified by the
ODD and OEDR.

• Incorporating Adverse Features
Scenario characteristics provide environments where adverse conditions may arise, such
as challenging weather, complex traffic patterns, or unexpected obstacles. Meanwhile,
system characteristics contain inherent adverse features, including sensor limitations, po-
tential model failures, processing constraints, and challenges related to decision-making.
Integrating adverse features into dataset configurations ensures that datasets accurately
represent the complexities of real-world driving scenarios.

• Dataset Configuration
Finally, the dataset configuration is structured and organized to facilitate the dataset gener-
ation process. This involves configuring scenarios based on scenario characteristics, gen-
erating model configurations reflecting system characteristics, and incorporating adverse
features. Additionally, object attributes, scene traits, and sensor specifications, derived
from scenario and system characteristics play essential roles in defining the annotation
schema and dataset composition. The annotation schema establishes guidelines and for-
mats for labeling objects and events within the synthetic dataset, while dataset composi-
tion encompasses the structural organization, including the distribution of scenes, objects,
and environmental conditions. This encompasses parameters such as scene complexity,
object diversity, sensor configurations, and temporal dynamics.

2.3.2.3 Midstream Layer: Dataset Generation

In the dataset generation layer, the parameterized configurations defined in the upstream
layer are translated into synthetic datasets through related platforms, tools, and techniques. The
main process, outlined in Algorithm 5, involves several essential steps.

• Environment and System Modelling
The environment and system are modelled aligning with upstream-defined configurations,
which are the foundational building blocks for subsequent dataset generation processes.

• Simulation Instantiation
Using the previously generated models, simulations are initiated and executed through
suitable platforms and tools, facilitating the dynamic generation of diverse driving sce-
narios. These simulation instances incorporate different configured adverse features from
the upstream layer, and the impact of system actions during the simulation process.

• Observation from Simulation
During simulation execution, perception and reference information are systematically ob-
served and recorded from the simulation instance using specialised tools. Perception data
encompasses object and environmental observations captured by the autonomous driv-
ing system as sensor readings during simulation, which are then stored as raw data in
the dataset. Reference data comprises ground truth information, which will be processed
following the annotation schema configured in the upstream layer.

43

[L2.9] Final POCs

Algorithm 5 DATASET GENERATION
1: Input: Output from Framework Layer 4
2: Properties: Platform and Tools P&T
3: Output: Ground Truth Labels GTLs, Perception Data PD, References REFs
4: procedure GENERATE(SCs, MCs, AFs, AS)
5: SimI← INSTANTIATE(SyS = P&T.MODELLING(MCs) , E = P&T.MODELLING(SCs)) ▷ Instantiate the

simulation SimI based on the modelling of environment E and the System SyS
6: for AFi ∈ AFs do ▷ Add adverse features into simulation instances
7: Aai ← AFi.GENERATE(Si−1) ▷ Generate corresponding Adversarial Actions Aai based on the last

state Si−1

8: while ISRUNING(SimI.UPDATE(Aai) do ▷ Update the simulation instance with adversarial action and
run

9: Refi , Pi ← CAPTURE(SimI) ▷ Observe and capture the sensor perception Pi and references Refi
10: Sai ← SyS.GENERATE(Pi) ▷ Generate System Actions Sai based on the perception Pi

11: SimI.INTERACT(Sai) ▷ Simulation instance interact with system actions
12: end while
13: end for
14: GTLs← GENERATE(COLLECT(Refi) , AS) ▷ Generate ground truth labels based on annotation schema
15: return GTLs, PD = COLLECT(Pi), REFs = COLLECT(Refi) ▷ Return for the post-processing layer
16: end procedure

Any issues or errors encountered during simulation execution must be addressed before pass-
ing the final results to the post-processing layer. For instance, if the intermediate results of the
simulation instance exceed the defined ODD and OEDR, it may necessitate identifying and re-
configuring scenarios or systems. Upon completion of executions, the final results, comprising
raw data, reference data, and labelled ground truth, are transmitted to the downstream layer for
post-processing.

2.3.2.4 Downstream Layer: Dataset Post-processing

Within the Data Post-processing layer, two essential components are employed to enhance
and prepare the synthetic datasets for downstream tasks: Dataset Enhancement and Dataset
Organisation, as shown in Algorithm 6.

In recent years, various types of generative adversarial networks (GAN) have emerged with
the aim to enhance computer-generated images [43]. Our approach draws inspiration from these
techniques, allowing us to generate variations of synthetic images from the proposed dataset.
Specifically, our method is an unpaired image translation built on a Cycle-GAN architecture
[44]. Depending on the learning base used for model training, it facilitates post-processing of
various types of images within the dataset, including in clear weather, rain, or fog.

• Algorithm inputs
The algorithm receives as input computer-generated images and an input guided data
associated with the ground truth. The guided data can be depth or segmentation maps and
guides the model to focus on particular areas of the image.

• Unpaired image translation
The image translation technique, based on a Generative model such as Cycle-GAN, in-
volves learning a mapping function between an input image and a target image, in order
to transferred to an another domain. Specifically, it enables the transformation of input
data into real data in this scenario.

44

[L2.9] Final POCs

After collecting all perception data, as well as reference data and annotation labels, the
Dataset Post-Processing layer proceeds to organize and structure the datasets. This involves
generating comprehensive documentation to provide details about the dataset’s composition,
structure, and attributes.

Finally, the dataset is ready for evaluation, training, and additional refinement processes.

Algorithm 6 DATASET POST-PROCESSING
1: Input: Output from Framework Layer 5
2: Output: Dataset for ready DSetR
3: procedure POST-PROCESSING(GTLs, PD, REFs, DC)
4: PD← ENHANCE/EXTENSION(PD , REFs) ▷ Enhance the dataset
5: DSetR← GENERATE(GTLs , PD , REFs , DC) ▷ Generate the organized dataset
6: return EVALUATE&REFINE(DSetR) ▷ Evaluate and refine the datasets
7: end procedure

The dataset was built along the Digital Model (as shown in the figure in the section 2.5 about
the final implementation) of 3.4 km trajectory on the Satory test track (the road information
was contained inside the corresponding trk file), with continuous assembly of different driving
scenes. Seven filters was defined on the camera (inside Pro-SiVIC) in order to simulate the
driving scenarios under different weather conditions. The dataset includes various types of
simulated vehicles (totally 13 vehicles), such as car and trucks, navigating the Satory test track.
The velocity is the range of 40 to 45 kmh. In the scenario, different camera perspectives were
incorporated, including front and rear view of the ego vehicle, as well as close and distant
perspectives.

The dataset comprises 7 weather conditions (as depicted in the figure below). Each con-
dition’s corresponding data has been stored in separate sub-datasets, and the overall dataset
structure resembles that of the left folder.

The left folder illustrates the structure of the sub-dataset, which consists of two categories:
”detection” and ”segmentation”. Each category contains 10,000 raw images collected from
Pro-SiVIC. Additionally, corresponding label files are stored alongside the images to provide
ground truth information, facilitating the evaluation of different functionalities.

Figure 39: Structure of the dataset generated in BuSAS

45

[L2.9] Final POCs

Generation: Raw images and mask/reference images are generated automatically from Pro-
SiVIC, representing the view of the real world and corresponding reference (here are vehicles,
which could also contain the driving lane or other traffic objects) respectively.

• Raw images: JPG Files, Dimensions: 640 x 480, Resolution 96 dpi (both Horizontal and
Vertical), Bit depth 24

• Reference images: JPG Files, Dimensions: 640 x 480, Resolution 96 dpi (both Horizontal
and Vertical), Bit depth 24

Annotation: The information on ground truth will be extracted and annotated from the
mask/reference image we collected, the relative position of every vehicle appearing in mask/ref-
erence images will be annotated within the real image, and also the corresponding boundary
shape will be marked.

Representation: In order to record the information that has been annotated, 2 types of data
formats are used.

• Bounding Box:

– { Id, NormalizedCenterX, NormalizedCenterY, NormalizedBoxWidth, Normalized-
BoxHeight } Where Id represents the categories of vehicle, 2 for vehicle and 4 for
truck.

– NormalizedCenterX = CenterX / W

– NormalizedCenterY = CenterY / H

– NormalizedBoxWidth = w / W

– NormalizedBoxHeight = h / H

– { CenterX, CenterY } is the center position of box, w and h are width and height of
the box, W and H are the width and height of the raw image, the resolution is 640 x
480 pixels in this dataset

• Polygon:

– { Id, x0/W, y0/H, . . . xn/W, yn/H }Where Id represents the categories of vehicle, 2
for vehicle and 3 for truck.

– { x0, y0 } .. { xn, yn } are the coordinates of the polygon

– W and H are the width and height of the raw image, the resolution is 640 x 480
pixels in this dataset

2.3.2.5 Ground truth and reference generation

Automated vehicles rely heavily on perception systems to interpret their surroundings and
generate decision and information for path planning module allowing the operating of auto-
mated driving. However, developing and validating these perception systems require extensive
testing and evaluation in simulated environments before real-world deployment. Ground truth
data, which provides accurate and reliable annotations of the environment, is essential for both
training and validating perception algorithms. Without ground truth data, it is challenging to
assess the performance of these AI-based algorithms objectively.

46

[L2.9] Final POCs

During the simulation process of Pro-SiVIC, perception data and ground truth data are gath-
ered using specific plug-in in Pro-SiVIC and some module in RTMaps through the data-sharing
mechanism developed to apply an efficient interconnection between several applications either
on the same computer or remote. For instance, as illustrated in Figure 40(b), simulated image
frames produced in Pro-SiVIC are captured and stored by the sensor module defined in RTMaps
to construct the dataset. Various mechanisms embedded within Pro-SiVIC are employed to gen-
erate the reference data. One method involves altering the rendering texture of objects and the
environment (such as vehicles, pedestrians, lanes, roads, buildings, etc.), resulting in the cre-
ation of segmentation masks (depicted in Figure 40(d)) that are then collected as part of the
reference data.

(a) Scenario from Test track, City Center, Highway

(b) Camera readings (simulated images)

(c) Depth information (visualize as depth map)

(d) Segmentation mask

Figure 40: Generic Conceptual Framework of SiVIC-ADVeRSce: Data collected from Pro-SiVIC involving Depth
Map and segmentation TM (Source: UGE)[8]

In addition to visibility-based mechanisms, a specific mechanism known as the ”observer”
in Pro-SiVIC facilitates the real-time generation of the state vector of different objects in the
scene, including vehicles, pedestrians, static objects, and road configurations. Notably, the
depth matrix (visualised in Figure 40(c)) of sensors can also be captured as reference data,

47

[L2.9] Final POCs

which can contribute to refining annotation and improving the dataset. The ”observers” are
addressed in this deliverable in the next section.

Figure 41: Generic Conceptual Framework of SiVIC-ADVeRSce: Generation of a set of annotation (Source UGE)

As defined in the conceptual framework, the annotation labels are generated based on the
configured annotation schema from the upstream layer. In the implemented SiVIC-ADVeRSce
framework, by leveraging various mechanisms for reference data generation, multiple anno-
tation schema possibilities have been provided, each corresponding to different functional as-
pects of perception. These annotation schema are primarily categorised into object, semantic,
and temporal domains, enabling comprehensive annotation of multi-data modalities. Within
object annotations, the goal is to obtain precise annotation of objects using bounding boxes,
polygons, and pixel-level masks. Figure 41 illustrates the different object annotations in the
implemented framework. The second type of annotation implemented in SiVIC-ADVeRSce,
namely semantic annotations, encompasses the entire perception data and allows for the extrac-
tion of coherent sub-segments or regions, assigning meaningful labels to each segment based on
its semantic content. Furthermore, SiVIC-ADVeRSce extends its annotation schema to include
the temporal aspect, enabling the annotation of timestamps, events, and temporal segments.
This feature aligns with the virtual timestep in Pro-SiVIC, ensuring accuracy and consistency
throughout the annotation process.

2.3.2.6 Data from ground-truth sensors

Multiple observers exist, based on the type of objects that we want to observe from the
environment. These sensors give ground-truth data regarding the exact state of various objects
in the simulation. This is useful when validating the sensor-based algorithms, as provided
values are the ideal result of such algorithms. Conversely, this is also useful to test the control
algorithms without having to worry about the correctness of input values.

• Generic object observer is a generic observer which produces the position and orienta-
tion values of the targeted object, which can be any positionable object. The values are
exported in Table 2:

• Car observer produces information about the state of the vehicle. The values are ex-
ported in Table 3 :

48

[L2.9] Final POCs

position of Objects # angle of the objects
0: Object Coordinate X (m) 3: Angle X (rad)
1: Object Coordinate Y (m) 4: Angle Y (rad)
2: Object Coordinate Z (m) 5: Angle Z (rad)

Table 2: Description of the data frame provided by Generic object observer

vehicle speeds # forces applied to the tires
0: Speed X (m) 18: Tire Force X Front Left (Newton)
1: Speed Y (m) 19: Tire Force Y Front Left (Newton)
2: Speed Z (m) 20: Tire Force Z Front Left (Newton)
vehicle angular velocities 21: Tire Force X Front Right (Newton)
3: Angle Speed X (rad/s) 22: Tire Force Y Front Right (Newton)
4: Angle Speed Y (rad/s) 23: Tire Force Z Front Left (Newton)
5: Angle Speed Z (rad/s) 24: Tire Force X Rear Left (Newton)
rotational speeds of vehicle wheels 25: Tire Force Y Rear Left (Newton)
6: Wheel Speed FrontLeft (round/s) 26: Tire Force Z Rear Left (Newton)

7: Wheel Speed FrontRight (round/s) 27: Tire Force X Rear Right (Newton)
8: Wheel Speed RearLeft (round/s) 28: Tire Force Y Rear Right (Newton)
9: Wheel Speed RearRight(round/s) 29: Tire Force Z Rear Right (Newton)
torque of the wheels # acceleration vector
10: Torque FrontLeft (Newton.m) 30: Acceleration X (m/s2)
11: Torque FrontRight (Newton.m) 31: Acceleration Y (m/s2)
12: Torque RearLeft (Newton.m) 32: Acceleration Z (m/s2)
13: Torque RearRight(Newton.m) # radiuses of the wheels
wheel heading 33: WheelRadius FL (m)
14: Wheel Angle(rad) 34: WheelRadius FR (m)
position of vehicle 35: WheelRadius RL (m)
15: Vehicle Coordinate X (m) 36: WheelRadius RR (m)
16: Vehicle Coordinate Y (m) # rotation vector
17: Vehicle Coordinate Z (m) 37: Angle X (rad)

38: Angle Y (rad)
39: Angle Z (rad)

Table 3: Description of the data frame provided by car observer

• Road observer produces information about the position of the vehicle relative to the road
track. This sensor requires a reference road track definition file. The values are exported
in Table 4:

• Human observer produces information about the state of the human character. The
values are exported in Table 5:

2.3.2.7 Data from simulated sensors

Different artificial algorithms(Object Detection, Tracking, Lane Detection, etc) are employed
as functional modules in our autonomous driving systems prototype. At the same time, a set of
sensors corresponding to the real world are simulated in Pro-SiVIC, providing various types of
data as input for the functional modules that have been developed and are possible in the future.

• Camera: The camera object holds sensor configuration and can be configured through
different properties. Meanwhile, a list of filters can be added as camera functions, whichs
aim to enhance the camera. The definition is detailed in guidance document of Pro-SiVIC.

It is worth mentioning that a wide-angle camera (FOV ≥ 180°) is able to be created by

49

[L2.9] Final POCs

road profile # position of the left side of the road
0: curvilinear abscissa (m) 9: X coordinate of the right road border (m)
1: Curvature 10: Y coordinate of the right road border (m)
2:Heading (rad) 11: Z coordinate of the right road border (m)
road center position # current vehicle parameters
3: X coordinate of the road center (m) 12: Ego vehicle X state (m)
4: Y coordinate of the road center (m) 13: Ego vehicle Y state (m)
5: Z coordinate of the road center (m) 14: Ego vehicle Z state (m)
position of the left side of the road 15: Ego vehicle heading (rad)
6: X coordinate of the left road border (m) # position of the vehicle relative to the road
7: Y coordinate of the left road border (m) 16: Lateral deviation between Vehicle
8: Z coordinate of the left road border (m) and road center (m)

17: Heading deviation between vehicle
and road center (rad)

Table 4: Description of the data frame provided by road observer

speed # position of pedestrian
0: speed (m/s) 5: Pedestrian Coordinate X (m)
torque applied to the pedestrian 6: Pedestrian Coordinate Y (m)
1: Torque (newton.m) 7: Pedestrian Coordinate Z (m)
pedestrian angle
2: Angle X (rad)
3: Angle Y (rad)
4: Angle Z (rad)

Table 5: Description of the data frame provided by human observer

using a fish eye camera object. The entire fish eye field is captured by the sensor. This
plug-in uses 6 intermediate cameras to compute the view over the whole field, then recon-
struct the final image. Fish eye cameras work in a similar way to the standard cameras,
thus accepting a very similar set of properties. However, there are some differences. Un-
like the standard camera, fish eye cameras do not support filters yet. They do not support
multisampling or high-precision colour formats either, corresponding properties are thus
not available.

The simulated camera sensors export image data to separate image files for each period,
with specified colour depth and file format. In each of its entries, the main output file
contains a timestamp followed by the width and height of the image and then is passed to
the next module as input or stored on the disk. In addition, the images inside the output
can also be displayed in the main rendering window (camera resolution is independently
configured at the sensor level).

• LiDAR : The simulator features two methods to simulate a LiDAR range finder, the first
makes use of ray tracing to compute collision to the closest object, and the latter uses the
image depth buffer projection distances.

The simulated LiDAR sensors export frame data in the main output file. In each of its
entries, this file contains a timestamp followed by the number of impacts (frame width),
then a list of distances, then a list of luminances (one distance and one luminance per
impact).

50

[L2.9] Final POCs

2.3.2.8 Data from functional modules

The data that we obtain from the different functional modules is represented in Table 6:

Functional model Input Data frame Output Data frame

Object Detection

Raw images from camera sensors
Size of input images
Classification Id (Class ID)
Corresponding name to Class ID
Threshold of confidence
Max. Number of BBOX

BBOXs of detected objects
Class ID of BBOXs
Confidence of BBOXs
Result images with annotations
Size of output images

Tracking

Raw images from camera sensors
Size of input images
Ouput BBOXs from Object Detection
Corresponding name to Class ID
Threshold of confidence
Threshold of NMS
Dimension of features
Max. Age (Threshold pf deleting a track)
Nearest Neighbor Distance Metric parameters

Result images with annotations
Size of output images
Tracker
List of matched detections
List of unmatched detections

Lane Detection

Raw images from camera sensors
Size of input images
Number of row anchors
Number of gridding cells
Number of lanes

Result images with annotations
Size of output images
Probability of each location
Location of lanes

Table 6: Description of the data frame provided by different functional modules

2.3.3 General framework and methodology for Digital Models generation

A generic methodology for the generation of a Digital Twin typically involves several key
steps and functions. Here’s an outline of the main components:

• Define Objectives and Scope: Clearly define the objectives of creating the digital twin
and identify the scope of the physical system or asset to be modelled. In the case of
PRISSMA, the objectives and scope are define by the different POCs but addresses sys-
tems of systems and AI-based systems evaluation and validation for automated mobility.
Different environment have been identified (open road like Paris2Connect, and controlled
environments like UTAC, Transpolis, and Satory test tracks).

• Data Collection and Integration: These steps involve gathering data from various sources
such as LiDAR, GPS RTK, cameras, IoT sensors, operational systems, historical databases,
and manual inputs. The collected data is then integrated and preprocessed to ensure con-
sistency, quality, and compatibility with the digital twin environment. For Digital Shadow,
this process corresponds to the first group of functions (orange boxes) in Figure ??. The
outputs of this step primarily focus on generating a high-fidelity 3D environment with
vehicles and UAVs equipped with high-resolution LiDAR and cameras. The resulting
model includes millions of points and faces along with photogrammetric images, where
one pixel could represent a couple of square centimetres (centre of the figure ??). It serves
as a foundational model rather than the final model required for real-time operation. For
the other parts (Digital Model and Digital Twin (4 surrounding domains of the figure ??),

51

[L2.9] Final POCs

benches, human expertise, observation facilities, and theoretical and physical knowledge
are essential.

• Modelling and Simulation: Develop models that accurately represent the physical sys-
tem or asset, including its structure, behaviour, and interactions with the environment.
In automated mobility, these models are represented and presented in the four domains
(User, Ego-Vehicle, Infrastructure, and Mobility) of the figure ??. Some needed models
to develop are provided for each domain. Use simulation techniques to validate and refine
the models, ensuring they accurately capture the dynamics and the high fidelity behaviour
of the real-world system.

– Digital Model Development: From the high resolution 3D model, a set of 3D
lighter (but representative) models are extracted or generated (meshes, material, tex-
tures, ...). This stage is provided in the figure 42 by the green and cyan boxes. The
data of the Digital Shadow may also include in addition to the spatial information,
sensor data, environmental conditions, and operational parameters. Cleanse, pre-
process, and transform the collected 3D data to ensure consistency, accuracy, and
compatibility with the digital twin environment and a real-time operating. This may
involve data reduction, sharing, filtering, noise reduction, calibration, alignment,
and normalisation.

– Digital Shadow Development: A Digital Shadow relies on historical data from sen-
sors, databases, and operational systems to understand past behaviours and trends.
It utilises physics-based models or simulations to accurately replicate physical en-
tity interactions and behaviours, enabling predictive analysis and optimisation. Like
the Digital Twin, methods used to develop dynamic and physical models include
data-driven approaches using AI, physics-based modelling with mathematical equa-
tions, and hybrid approaches integrating both techniques for digital twin develop-
ment. Nevertheless, Digital Shadow stay a Model and software in the loop approach
without real-time links with the real system.

– Digital Twin Development: Implement the digital twin environment, including
software platforms, databases, and communication infrastructure. Integrate the de-
veloped models into the digital twin framework, ensuring interoperability and scal-
ability. This stage involves to develop mathematical models, algorithms, and simu-
lations to represent the behaviour, dynamics, and interactions of the physical enti-
ties or systems. This includes creating 3D geometric models, physics-based mod-
els, control algorithms, and scenario simulations. Integrate the processed data and
simulation models into a cohesive digital twin framework. Merge the diverse data
streams and models to create a comprehensive representation of the physical entities
or systems.

• Deployment and Integration: Deploy the digital twin into operational environments,
ensuring seamless integration with existing systems and processes.This part, for a sub
part of Digital Shadow, corresponds to the last stage (blue box) of the figure 42

• Feedback and Continuous Improvement: Establish feedback loops to capture insights
from users and real-world observations, incorporating them into the digital twin to im-
prove accuracy and reliability. Continuously update and refine the digital twin based on
new data, changes in the physical system, and evolving requirements.

52

[L2.9] Final POCs

• Maintenance and Support: Establish procedures for ongoing maintenance and support
of the digital twin, including software updates, troubleshooting, and performance optimi-
sation. Monitor the performance and effectiveness of the digital twin, making adjustments
as necessary to ensure it continues to meet the objectives and requirements. Provide con-
tinuous monitoring and updating with new data, insights, and improvements. This iter-
ative process ensures that the digital shadows and by extension the digital twin remains
accurate, up-to-date, and relevant to its physical counterpart.

• Validation and Calibration: Validate the digital shadow against real-world observations
and experimental data. Calibrate the simulation models and parameters to ensure accu-
racy and reliability in capturing the behaviour of the physical counterpart.

Additional functionalities could be provided for the using and updating of Digital Shadows
like:

• Real-time Monitoring and Control: Establish mechanisms for real-time monitoring of
the physical system, collecting sensor data, and updating the digital twin accordingly.
Implement control algorithms to enable remote control and management of the physical
system through the digital twin interface. Analytics and Predictive Maintenance:

• Apply data analytics techniques to analyse historical and real-time data, identifying trends,
patterns, and anomalies. Use predictive analytics to forecast future behaviour, perfor-
mance, and potential issues, enabling proactive maintenance and optimisation.

• Visualisation and User Interface: Provide tools and interfaces for visualising and inter-
acting with the digital shadow. This may include 3D visualisation platforms, graphical
user interfaces, virtual reality environments, and augmented reality applications. Provide
dashboards, reports, and customise views to address specific needs of different users and
use cases in terms of analysing, understanding, and interpretation of data.

• Security and Privacy: Implement robust security measures to protect sensitive data and
prevent unauthorised access or tampering. Ensure compliance with relevant privacy reg-
ulations and standards to safeguard the confidentiality and integrity of the data.

Figure 42: Process for the generation of Digital Model (source: UGE).

53

[L2.9] Final POCs

Figure 43: Digital Twin process of development (source: UGE).

2.3.4 Generic and interoperable simulation framework

2.3.4.1 Overview of the modules, tools, functions involved in a global architecture

In PRISSMA, from the implementation made for the POC 1, it appeared a clear generic
framework involving the different tools, models, and platforms defined in the previous sections
of this deliverable. It appeared too that propose a generic simulation framework is very complex
and needs to share this problem in sub-problems. From the global framework (non exhaustive)
presented in the figure 44 and proposed by UGE, we have an overview of this complexity. in
order to be more understandable, a simpler generic framework has been proposed in the figure
45. A part of this framework has been used and implemented in the POC 1 (figure 46). It is
interesting to emphasise that similar functions and tools with different complexities appear in
this framework. It is the case for the traffic generation and management. With low density traffic
situation, it is recommended to use the models (vehicles, 2 wheels, and pedestrians) proposed
in the simulation platform (in our case Pro-SIVIC). In this condition, each vehicle (generally
limited to 15 till 20 vehicles) can be controlled by a specific decision-making and path planning
algorithm implemented as a package or a DLL in the application environment (RTMaps). In
the case of a very dense traffic with a couple of hundred vehicles, it is recommended to use
a dedicated simulator (Traffic generation tool in the generic framework). Of course, both can
be used in same time. We favour the complex and dynamic model in Pro-SiVIC for the ego-
vehicle, and the traffic simulator for populating the environment with simpler evolution models
(i.e. IDM).

54

[L2.9] Final POCs

Fi
gu

re
44

:F
in

al
ov

er
vi

ew
of

th
e

ge
ne

ri
c

si
m

ul
at

io
n

fr
am

ew
or

k
pr

op
os

ed
by

U
G

E
fo

rt
he

ev
al

ua
tio

n
an

d
va

lid
at

io
n

of
AV

(S
ou

rc
e:

U
G

E
)

55

[L2.9] Final POCs

Figure 45: Simplified generic simulation framework proposed and developed by UGE (Source: UGE)

2.3.5 Simulation platforms derived from the generic framework

2.3.5.1 Overview of Driving Simulation environment

Figure 47: Proposal of a Driving Simulation architecture from the generic framework proposed by UGE (Source
UGE)

56

[L2.9] Final POCs

Fi
gu

re
46

:I
m

pl
em

en
ta

tio
n

of
th

e
PO

C
1

si
m

ul
at

io
n

pl
at

fo
rm

(S
ou

rc
e

U
G

E
)

57

[L2.9] Final POCs

2.3.5.2 Overview of AV and CAV simulation environments

Figure 48: Proposal of an Automated Vehicle Simulation architecture from the generic framework proposed by
UGE (Source UGE)

Figure 49: Proposal of a Connected and Automated Vehicle Simulation architecture from the generic framework
proposed by UGE (Source UGE)

58

[L2.9] Final POCs

Figure 50: Proposal of a Connected and Automated Vehicle Simulation architecture from the generic framework
proposed by UGE (Source UGE)

2.3.5.3 Overview of the distributed simulation environment

Figure 51: Proposal of a Distributed Connected and Automated Vehicle Simulation architecture from the generic
framework proposed by UGE (Source UGE)

59

[L2.9] Final POCs

2.3.5.4 Overview of ViL simulation environments

Figure 52: Proposal of a Vehicle in the Loop architecture involving AV simulator and application environment
from the generic framework proposed by UGE (Source UGE)

The figure 53 presents a complex architecture merging a simulation framework, a dynamic
and immersive platform (CKAS, Zoé cabin, dashboard, sound, steering wheel and force feed-
back,), and the real automated Zoé Renault. This platform is called ImPACT 3D and is
developed by UGE under the responsibility of Dominique Gruyer. In this architecture, the first
ego vehicle is controlled by using API and control law using the external vehicle dynamics
implemented in an external tool or library (DLL). The control laws generate orders used by
the CKAS motion system. The simulation engine provides the rendering of the road scene
using the Digital Model of the Satory test tracks. The second ego-vehicle corresponds to the
real automated Zoé Renault moving on the real Satory test tracks. The embedded RTK GPS
and INS/Odo sensors provides the reference about the second ego-vehicle state vector in order
to control the virtual second ego-vehicle (avatar) in the simulation environment. Concerning
the first ego-vehicle, the state vector is sent to the real ego-vehicle in order to provide an aug-
mented reality usable by the embedded application environment. In this real environment, the
LiDAR data and the camera images are augmented and enriched with the projection of the vir-
tual ego-vehicle. In both real vehicle and simulation platform, it is possible to put in the loop
2 real drivers. The synchronisation of the different part of this distributed platform is done
by using of PTP and NTP. NTP used for synchronisation at the application level. NTP has a
coarse-level granularity, and a lack of synchronisation guarantee requirement. But it is enough
to synchronise the computers and applications in the real ego-vehicle. NTP is mainly a software
synchronisation. PTP is a hardware synchronisation system used for accurate synchronisation.
PTP is used for critical applications and deletes the network and equipment delay and jitter in
the time accuracy.

60

[L2.9] Final POCs

Figure 53: Proposal of an Interconnected platform as the concept of ImPACT 3D. ImPACT 3D is developed by
UGE and will work in real time with a real proprtype on the test track and a dynamic and immersive simulation
platform. This distributed, interconnected, and dynamic platform relies on the generic framework proposed by
UGE (Source UGE)

Figure 54: Impact 3D: an interconnected platform with dynamic and immersive platform and real automated
vehicle (Source UGE)

61

[L2.9] Final POCs

2.4 Methods, procedures, and protocols for evaluation and validation

The evaluation process has to be done at 3 levels: system, component, and model/tool. In the
POC 1 called BuSAS, even if we have developed the full service, we have focused our effort
mainly on the second level (evaluation and validation of AI-based perception modules). The
two other levels are addressed in other POCs.

2.4.1 Evaluation of Object Detection

The purpose of a detection-based metric is to get meaningful measures of the system’s abil-
ity to perform object detection tasks. Metrics include the number of correctly detected objects,
falsely detected objects, or miss-detected objects. Other widely used detection measures are
detection rate/precision and sensitivity. The detection-based metrics (also called frame-based
metrics) are used to evaluate the performance of a SUT (System under test) on individual frames
from video sensor data. They do not take into account the identities of objects over the lifespan
of the test. All the objects are individually validated to see if there is a corresponding match
between SUT and GT (ground truth) systems for each frame during the test.When associating
GT data with SUT-detected objects, six cases can occur: zero-to-one, one-to-zero, one-to-one,
many-to-one, one-to-many, and many-to-many associations, which correspond to false alarms
(the detected object has no correspondence), miss-detection (the GT data has no correspon-
dence), correct detection (the detected object matches one and only one object), merge error
(the detected object is associated with several GT objects), split error, and split-merge. The
performances for each individual frame are then averaged over all the frames in the experiment
to provide a performance evaluation measure.

The notation used for evaluation is as follows:

• FP: False positive, an object present in the SUT, but not in the GT (also called a False
Alarm)

• FN: False negative, an object present in the GT, but not in the SUT (also called a Detection
Failure)

• TP: True positive, an object present in the GT and the SUT (also called Correct Detection
or one-to-one match)

• TN: True negative, an element present in neither the GT nor the SUT

• CGT: Complete Ground Truth is the total number of GT objects.

The quality of the object detection model can generally be evaluated from the following three
aspects [9, 45, 46, 47]:

• Accuracy of Classification

– False Positive Rate (FPR) is computed by FPR = FP/(FP + TN), representing the
number of false positives relative to the sum of the number of false positives and true
negatives. It is a measure of how well the system correctly rejects false positives.

– False Negative Rate (FNR) is computed by FNR = FN/(TP+FN), representing the
number of false negatives relative to the sum of the true positives and the false
negatives. It is a measure of the likelihood that a target will be missed given the
total number of actual targets.

62

[L2.9] Final POCs

– True Negative Rate (TNR) is computed by TNR = TN/ (TN + FP), representing
the true false detections relative to the sum of the true false detections and the false
positive. This provides a measure of the likelihood of a negative response given the
total number of actual negative detections.

– Detection Rate (DR) is computed by DR = TP/ (TP + FN), representing the number
of true positives relative to the sum of the true positives and the false negatives. It is
a measure of the percentage of true targets that is detected.

– Accuracy is the proportion of all predictions that are correct ((TP+TN)/CGT). The
accuracy rate is generally used to evaluate the global accuracy of the model, and
cannot contain too much information to fully evaluate the performance of a model.

– Precision refers to the probability of correct detection among all detected objects.
Precision (TP/ (TP + FP)) is defined in terms of predicted outcomes. It should be
noted that Precision and Accuracy are not the same. Accuracy is for all samples,
while Precision is only for the part of the samples that are detected (including false
detections).

– Recall refers to the probability of correct detection among all positive samples. The
P-R curve uses recall as the abscissa axis and precision as the ordinate. The change
in the detection threshold will also cause the Precision and Recall values to change,
thus obtaining the curve.

– F-Measure gives an estimate of the accuracy of the systems under test.

– Receiver Operating Characteristic (ROC) Curve is a graph of Detection rate vs.
False Positive Rate (as in Figure 55). When the distribution of positive and negative
samples in the test set changes, ROC curve can remain unchanged

Figure 55: An example ROC curve (Detection Rate vs. False Positive Rate) [9]

– Detection Error Trade-off Curve (DET Curve) is a graph of Miss Rate (or False
Negative Rate) vs. False Positive Rate. The DET curve is a plot of the error rate for
a binary classification system.

– Precision-Recall Curve (PR Curve): By varying the confidence value, it is also
possible to create the PR curve. In pattern recognition and information retrieval,
precision (also called positive predictive value) is the fraction of labeled or retrieved
instances that are relevant, while recall (also known as sensitivity) is the fraction

63

[L2.9] Final POCs

of labeled or relevant instances that are retrieved. Both precision and recall are
therefore measures of relevance.

– Average-Precision is the area under the P-R curve. Generally, the better the clas-
sifier, the higher the AP value. The common approaches are 11-point interpolation
and Interpolating all points.

– mean Average Precision is the average of multiple categories of AP, mAP must be
in [0,1], the bigger the better. This metric is one of the most important in object
detection algorithms.

• Accuracy of Location

– IoU computes the ratio of the intersection and union of the ”predicted bounding
box” and the ”true bounding box”.

– Non-Maximum Suppression (NMS) is to find a bounding box with a relatively
high degree of confidence based on the coordinate information of the region and
score matrix. For prediction boxes that overlap each other, only the one with the
highest score is kept. NMS calculates the area of each bounding box, and then sorts
it according to the score, and takes the bounding box with the largest score as the
first object to be compared in the queue; Then calculate the IoU of the remaining
bounding box and the current maximum score and box, remove the bounding box
whose IoU is greater than the set threshold, and retain the prediction box with a
small IoU; Then repeat the above process until the candidate bounding box is empty.
Finally, there are two thresholds in the process of detecting the bounding box, one
is the IoU, and the other is to remove the bounding box whose score is less than
the threshold from the candidate bounding box after the process. It should be noted
that Non-Maximum Suppression processes one category at a time. If there are N
categories, Non-Maximum Suppression needs to be executed N times.

• Performance of Detection describe how fast the speed of the model can run. It can be
the number of images that the model can process per second (fps).

2.4.2 Evaluation of Multi-Objects Tracking

The tracking-based metrics measure the ability of a SUT to track objects over time. The
tracking-based metrics (also called object-based metrics) take the identity and the complete
trajectory of each object separately over the test sequence and compare the GT tracks with the
SUT tracks based on best correspondence. Then, based on these correspondences, various error
rates, and performance metrics are computed.

Since the GT track(s) could correspond to more than one SUT track, a correspondence map-
ping has to be established first. Based on this mapping between the object tracks, the track-based
metrics are computed. The correct match requires both spatial and temporal overlap between
GT tracks and SUT tracks. Requirements for these metrics include:

• All objects that appear must be found in a timely manner(found a mapping);

• The object’s position should be as consistent as possible with the position of the real
object, where the precision with which the object’s position was estimated should be
determined.

64

[L2.9] Final POCs

• Each object should be assigned a unique ID, and the ID assigned to that object remains
the same throughout the sequence.

• Making sure that the objects were tracked correctly over time. This includes checking
that objects were not substituted for each other, for example when they passed close to
each other and checking that a track was correctly recovered after it was lost, for example
when an object was occluded.

The following metrics[41, 9, 48] are calculated:

• Object Tracking Time delay: This is the estimated delay between the SUT algorithm’s
detection of an object or person and that of the GT. It could be positive or negative.

• Identification switch (IDSW): is the ID Switch (total number of ID switches, mis-
matches): in the above Figure 56, the switch from red to blue is recorded as an IDSW, the
sum of the number of mismatches in the entire simulation.

Figure 56: Prameters of MOT evaluation [10]

• Track Matching Error (TME) is the positional error between the SUT trajectory and the
GT trajectory and measures the average distance error between the GT and SUT track.
The smaller the TME number, the better the tracking accuracy.

• Track Completeness (TC) is defined as the time for which the SUT track overlapped
with the GT track divided by the total duration of the GT track.

• Occlusion success rate (OSR): OSR = Number of successful dynamic occlusions/ Total
number of dynamic occlusions. A successful occlusion occurs when the track and object
identity is not lost during the occlusion or are correctly recovered immediately following
the occlusion. recovered immediately following the occlusion.

• Mutiple Object Tracking Accuracy is a metric to measure the accuracy of single-camera
multi-objects tracking. The computation and the process are shown in Equation 1.

MOTA = 1− FN + FP + IDSW

GT
∈ (−∞, 1] (1)

The closer the MOTA is to 1, the better the performance of the tracker. Due to the exis-
tence of the number of jumps, there may exist cases where MOTA is less than 0. MOTA
mainly considers all object-matching errors in tracking, mainly FP, FN, and IDs. It is a
very intuitive measure of tracking its performance in detecting objects and maintaining
trajectories, and independent of object detection accuracy.

65

[L2.9] Final POCs

• Mutiple Object Tracking Precision is a metric to measure the position error of single-
camera multi-objects tracking.

• Mostly Tracked: an Object is mostly tracked if it is successfully tracked for at least 80
percent of its life span. Note that it is irrelevant for this measure whether the ID remains
the same throughout the track.

• Mostly Lost: If a track is only recovered for less than 20 percent of its total length, it is
said to be mostly lost.

• Partially Tracked: Besides Mostly tracked and lost, others are all regarded as partially
tracked.

• Fragmentation: Besides Mostly tracked and lost, others are all regarded as partially
tracked. To that end, the number of track fragmentations(FM) counts how many times
a ground truth trajectory is interrupted (untracked).In other words, a fragmentation is
counted each time a trajectory changes its status from tracked to untracked and tracking
of that same trajectory is resumed at a later point.

• ID related metrics: IDP (Identification Precision) represents the accuracy of pedestrian
ID recognition in each pedestrian box; IDR (Identification Recall) represents the recall
rate of pedestrian ID recognition in each pedestrian box; IDF1 (Identification F-Score)
represents the F value of pedestrian ID recognition in each pedestrian box.

MOTA is not sufficient to measure the performance of multi-object tracking in some cases.
The evaluation of MOTA overemphasizes the effect of detection. According to the calculation
method of MOTA, an extreme case is that the performance of detection is very good, but all
detected targets are not tracked, and are all assigned the same track id. MOTA will be very high
because of IDsw=0. But obviously, the tracking performance for this extreme case is 0. By the
way, MOTP is the same. IDF1 can evaluate the tracking, but still relies on MOTA.

• HOTA (Higher Order Tracking Accuracy) [11] is a new metric for evaluating the per-
formance of multi-object tracking (MOT). It is designed to overcome many limitations of
previous metrics such as MOTA, IDF1 and Track mAP. HOTA divides the task of evalu-
ation tracking into three subtasks (detection, association, and localization), and uses the
IoU (intersection pair union) formula (also known as the Jaccard index) to calculate a
score for each subtask. It then combines these three IoU scores for each subtask into a
final HOTA score (as in Figure 57).

Figure 57: Sub-metrics of HOTA [11]

66

[L2.9] Final POCs

• LocA (Localization Accuracy): Average localization similarity averaged over all match-
ing detections and averaged over localization theresholds.

• DetA(Detection Accuracy): Detection Jaccard index averaged over localization thresh-
olds. DetA can be decomposed into two sub-metrics Detection Recall and Detection
Precision.

• DetRe(Detection Recall): TP/(TP+FN) averaged over localization thresholds.

• DetPr(Detection Precision): TP/(TP+FP) averaged over localization thresholds.

• AssA (Association Accuracy): Association Jaccard index averaged over all matching
detections and then averaged over localization thresholds. AssA can be decomposed into
two sub-metrics Association Recall and Association Precision.

• AssRe(Association Recall): TPA/(TPA+FNA) (shown in Figure 58) averaged over all
matching detections and then averaged over localization thresholds.

• AssPr(Association Precision): TPA/(TPA+FPA) (shown in Figure 58) averaged over all
matching detections and then averaged over localization thresholds.

Figure 58: Parameters of ASSA [11]

2.4.3 Evaluation of Lane Detection

Essentially, Lane detection is a part of object detection,which means that the same metrics
can also be applied to evaluate the module, such as Accuracy, F-Measure, and IoU, etc. Here
we introduce more specific (lane-oriented) metrics [12]:

• Accuracy of Lane Feature Extraction: As shown in Figure 59, the detected lane (d)
is determined by the lane features (b) that are extracted by a lane estimation algorithm.
Inaccurate lane features will not fit the road model accurately, and hence the estimated

67

[L2.9] Final POCs

Figure 59: Illustration of the key parameters and performance metrics for evaluating lane analysis process [12]

lane will not follow the actual lane. Analyzing the accuracy of the lane feature extraction
step aids in improving the performance of the entire lane detection process.

• Ego-vehicle localization: This metric uses distance de between the center of the camera
on the ego-vehicle with respect to the lane markings detected by the algorithm. It is
limited by lane detection in the far depth of view.

• Lane Position Deviation: ((e) in Fig. 59) measures the deviation of detected lane (d)
from the actual lane that is obtained by joining the actual lane markings ((h) in Fig. 59).
It captures the accuracy of the lane detection process in both the near and far depths of
view of the ego vehicle.

• Other Deviation Metrics: These metrics(including ego-vehicle localization) represent
the performance in the main real-world downstream application.

68

[L2.9] Final POCs

(a) End-to-End Lateral Deviation Metric [49]

(b) Per-frame Simulated Lateral Deviation Metric [49]

Figure 60: E2E-LD and PSLD

– End-to-End Lateral Deviation Metric (in Fig. 60(a)) is the maximum lateral devi-
ation from the lane center in continuous closed-loop perception and control, which
is the ultimate downstream-task performance metric for lane detection. Such devi-
ation is directly safety-critical as large lateral deviations can cause a fatal collision
with other driving vehicles or roadside objects.

– Per-Frame Simulated Lateral Deviation Metric (in Fig. 60(b)) simulates E2E−LD
only with a single camera input at the current frame (X0) and the geometry of the
lane center.

• Computation Efficiency and Accuracy: Having a high accuracy of detection at the cost
of high computational resources is not always desirable, a tradeoff between accuracy and
computational efficiency solution should be evaluated.

• Cumulative Deviation in Time: studies how the accuracy of the lane estimation pro-
cess varies in the last p seconds (indicated by (i) in Fig. 59). It helps to determine the
maximum amount of time (also critical response time) for which a lane analysis method
results in a “given” accuracy of lane deviation.

2.4.4 Verification and validation of sensor models

Sensor KPI:

• The most important KPIs for camera-based sensors are the following:

– Usable field of view (FOV) in the horizontal (H) and vertical (V) directions, mea-
sured in degrees (°)

– Range accuracy, measured in + cm and range precision, measured in cm

69

[L2.9] Final POCs

– Range resolution

– Maximum detection range

– Confidence measure (per pixel), standard deviation or confidence interval

– Compute requirements

– Area coverage measured in points per second or m2/s

• The most important KPIs for LiDAR sensors tend to be the following:

– Usable field of view (FOV) in the horizontal (H) and vertical (V) directions, mea-
sured in degrees (°)

– Angular resolution in H and V directions, measured in degrees (°) at the operating
frame rate or refresh rate of the sensor (Hz)

– Range accuracy, measured in + cm and range precision, measured in cm

– Maximum detection range on a dark target (e.g., 10 % reflective target) usually
measured as a Probability of Detection (PD) in %

– Noise level in the lidar point-cloud, usually measured as a Probability of False
Alarm (PFA) in %

– Power consumption of the lidar, measured in W

– Area coverage measured in m

• The most important KPIs for RADAR sensors tend to be the following:

2.4.5 Method of evaluation of the fidelity of synthetic data: correlation between physical
test and simulation

In PRISSMA, we have developed a new innovative feature-based analysis framework for
quantitatively assessing the fidelity of RGB computer-generated images from different synthetic
datasets ([13] [50]). Our approach focuses on two key aspects of images: texture and high-
frequency details. To address texture, the grey-level co-occurrence matrix (GLCM) method
is applied. This method characterises image texture by analysing pixel co-occurrences within
image regions. This approach also allows to extract Haralick metrics, providing statistical mea-
sures of texture features. For high-frequency details, discrete wavelet transforms are used.
Wavelet transforms allow to extract information across different scales and frequencies, en-
hancing our capability to analyse and evaluate image fidelity. By combining GLCM and wavelet
transforms, we aim to emphasise frequency features and capture intricate details in the images.

Our first approach, presented in figure 61, involves using the extracted features from GLCM
and wavelet transforms as inputs to a Convolutional Neural Network (CNN) to quantify the
degree of fidelity. This allows us to leverage the power of deep learning to assess the similarity
between synthetic and real images. The second approach is more direct, where we analyse the
Haralick metrics themselves to assess the degree of fidelity by comparing the metric values
between synthetic and real images.

70

[L2.9] Final POCs

Figure 61: Diagram of the proposed method for scores generation about synthetic image fidelity (Source: UGE).

2.4.5.1 Experiments

The purpose of the experiments carried out in PRISSMA is to provide a fidelity score of
synthetic images (from both learning and statistic based methods). The scores computation
is also conducted on real datasets to provide a more concrete indicator of the fidelity level in
synthetic images.

2.4.5.2 Learning-based method

Two sub-networks, namely Cross-GlNet and WLet-Net, are trained separately in a super-
vised manner using virtual and real images from a custom dataset. This dataset contains virtual
and real images provided by the datasets mentioned in this paper. There are 20572 images in
the training set, 6755 in the validation set and 1000 in the test sets. Each image in the dataset
is assigned a label, where the label 0 represents virtual images and the label 1 represents real
images. The outcomes produced by these networks represent the probability that the images
are faithful to reality. Consequently, results approaching 0 indicate a higher likelihood of the
images being synthetic, while probabilities closer to 1 suggest that the images are more likely
to be close to realistic.

Inspired by the CoNet and Cross-CoNet [51], [52], Cross-GlNet model use the GLCM of
cross-band channels (R+G, G+B, B+R) RGB images as input and takes the computation in two
directions (horizontal and diagonal) and a distance of 5 pixels in the images. These GLCMs are
then stacked together. The two models share a common architecture with a convolutional layer
(CL), a batch normalisation (BN), and a ReLu function following by a max-pooling.

• CB 1: A CL with 32 filters of size 3×3, a BN and ReLu followed by a max-pooling layer

71

[L2.9] Final POCs

• CB 2: A CL with 64 filters of size 3×3, a BN and ReLu followed by a max-pooling layer

• CB 3: A CL with 128 filters of size 3×3, a BN and ReLu followed by a max-pooling layer

• A dense layer with 256 nodes followed by a ReLu layer

• A dense layer with 1 node followed by a Sigmoid layer

The key distinction between WLet-Net and Cross-GlNet lies in their handling of multi-scale
inputs. Levels 5 and 6, with lower resolutions and finer frequencies, are incorporated at a later
stage in the network, fused into CNN layers with 32 and 64 filters of size 1x1, followed by
a concatenation layer. This coarse-to-fine architecture, inspired by [53], effectively restores
high-frequency information as the network progresses. For model implementation, we use
the Keras/TensorFlow framework, employing the Stochastic Gradient Descent (SGD) optimiser
with a learning rate of 0.0001 and binary cross-entropy as the loss function. The batch size is
set to 32, and training starts with 40 epochs, incorporating early stopping to prevent over-fitting.
Figure 62 provides a visual representation of the proposed network architectures.

Figure 62: AI-based networks for the computation of fidelity scores ([13]) (Source: UGE)

Table 7: Accuracy (%) of Cross-GlNet and WLet-Net on several test sets (1000 images).

Test sets Cross-GlNet WLet-Net

GTA (virtual) 91.90 97.16
vKitti (virtual) 100 47.97

Synthia (virtual) 99.90 98.94
Cityscapes (real) 99.59 99.86

Kitti (real) 100 98.49

Table 7 shows the accuracy performance of Cross-GlNet and WLet-Net. The accuracy values
(in percentage for more clarity) were computed using the TensorFlow model evaluation method.
This approach, which involves evaluating the performance of the models, gives us confidence
with the predicted results presented in Table 8. These predicted results, estimated with the same
framework as accuracy values, correspond to the fidelity scores. Moreover, in both tables, both

72

[L2.9] Final POCs

virtual and real datasets are evaluated. The scores provided by the real datasets are only used to
compare fidelity scores and provide an indicator of the level of fidelity of the synthetic datasets.

In Table 7, Cross-GlNet shows satisfactory performances, particularly on the GTA V and the
Cityscapes datasets. The WLet-Net model achieved satisfactory accuracy across the dataset,
except for vKitti. The overall results suggest that using frequency decomposition in a multi-
scale manner allows to capture relevant information about texture, edges, and other details that
can be useful in differentiating virtual images from real images.

Table 8: Fidelity scores (predictions in %) of Cross-GlNet and WLet-Net on several test sets.

Test sets Cross-GlNet WLet-Net

GTA (virtual) 12.03 4.30
vKitti (virtual) 0.05 51.21

Synthia (virtual) 10.42 3.60
Cityscapes (real) 96.67 98.05

Kitti (real) 99.81 96.85

Table 8 presents the predicted fidelity scores computed by different models on several test
sets. The high accuracy achieved by the models presented in Table 7 provides with confidence
in the accuracy of the score results. As expected, Kitti has a high score of fidelity, with 98.34%,
while vKitti, as a synthetic dataset, has a low score (25.63%). This table allows us to be aware of
the significant difference in fidelity scores between the synthetic datasets and the real datasets.
As reminder, evaluating the level of fidelity of synthetic images enables to determine whether
a synthetic image is realistic enough to be used in learning-based methods or in a process of
evaluation and validation of a perception system.

The initial approach yields promising results, enabling us to quantitatively assess the level of
fidelity of synthetic datasets. Nonetheless, its implementation can be cumbersome, particularly
when it comes to dataset setup and subsequent learning processes. As a more time-saving
alternative, we investigate a different approach in the following subsection.

2.4.5.3 Statistic-based method

In a second time, we have compared four synthetic and two real datasets using Haralick
metrics, which are computed on 100,000 image patches with a resolution of 64x64. The hue
channel of the HSV color space is used for analysis as it offers better discrimination between
image types. Min/max normalisation is applied to ensure metric values range from 0 to 1.
After computing Haralick metrics, Principal Component Analysis (PCA) is applied to reduce
dimensionality and interpret the data effectively. PCA helps in understanding the contribution
and relationships of each metric to the overall information. Focusing on the first two principal
components, which contain over 50% of the data’s information, we analyse the datasets. This
step ensures a comprehensive comparison, allowing us to interpret the individual contribution
of each metric and their correlation with the characteristics of real or synthetic datasets. Then,
we compute the contribution of each metric to each PC, PC1 and PC2, with:

Ki,k =
c2i,k
λk

(2)

where k is the PC index, λk is the eigenvalue associated to the PCk and ci,k = is the component
of the vector

√
λkuk and uk is the kth eigen vector.

73

[L2.9] Final POCs

Table 9: Contribution of each metric to PC1. The best contributions are in bold.

Metrics Kitti City Once NuScenes vKitti GTAV Kitti-C Synthia
ASM 0.11 0.032 0.089 0.10 0.098 0.083 0.094 0.078

Contrast 0.069 0.036 0.063 0.069 0.072 0.070 0.036 0.075
Corr 0.064 0.061 0.012 0.031 0.014 0.0002 0.068 0.027
Var 0.061 0.058 0.065 0.059 0.075 0.073 0.051 0.067

IDM 0.11 0.082 0.12 0.12 0.12 0.12 0.073 0.082
SA 0.052 0.011 0.021 9e-6 0.002 0.004 5e-5 0.010

SVar 0.048 0.058 0.064 0.055 0.071 0.068 0.052 0.063
SE 0.12 0.14 0.13 0.13 0.12 0.15 0.13 0.14
E 0.12 0.13 0.12 0.13 0.12 0.14 0.12 0.13

DVar 0.032 0.088 0.12 0.075 0.065 0.075 0.074 0.10
DE 0.12 0.12 0.13 0.13 0.12 0.14 0.11 0.12

IMC1 0.0004 0.065 0.028 0.060 0.068 0.0002 0.075 0.025
IMC2 0.08 0.11 0.032 0.039 0.041 0.056 0.10 0.068

Table 10: Contribution of each metric to PC2. The best contributions among the synthetic datasets are in bold.
The best contributions among the real datasets are underlined.

Metrics Kitti City Once NuScenes vKitti GTAV Kitti-C Synthia
ASM 0.015 0.15 0.095 0.032 0.027 0.040 0.015 0.091

Contrast 0.064 0.10 0.19 0.16 0.009 0.029 0.071 0.020
Corr 0.055 0.016 0.030 0.006 0.18 0.15 0.14 0.10
Var 0.18 0.19 0.21 0.27 0.008 0.11 0.036 0.079

IDM 0.033 0.12 0.012 0.024 0.006 0.074 0.12 0.13
SA 0.018 0.005 0.079 0.084 0.34 0.009 0.25 0.16

SVar 0.22 0.19 0.21 0.28 0.013 0.12 0.028 0.084
SE 0.002 0.011 0.025 0.019 0.0005 0.001 2e-5 0.009
E 0.014 0.031 0.026 0.026 4e-5 0.019 0.003 0.036

DVar 0.077 0.088 0.12 0.075 0.056 0.008 0.081 0.005
DE 0.12 0.12 0.13 0.13 0.003 0.020 0.049 0.053

IMC1 0.28 0.10 0.005 0.06 0.17 0.30 0.13 0.18
IMC2 0.037 0.002 0.084 0.014 0.18 0.11 0.076 0.042

The contributions to the PC1 and PC2 (Equation 2) seems to be interesting criteria to dis-
criminate real image data or CGI data.

Tables 9 and 10 present the computed contribution of each metric to PC1 and PC2 for dif-
ferent datasets. In Table 9, sum entropy (SE), entropy (E) and difference entropy (DE) metrics
contribute equally to PC1 for both synthetic and real datasets. These results do not allow to
draw conclusions about the representativeness of the metrics based on the datasets. However,
in Table 10, we can observe that some metrics are more significant for the synthetic datasets
(highlighted in bold, including correlation, sum average, and IMC1), while others (underlined,
such as var and svar) are more indicative for the real datasets. Based the metrics highlighted
in bold, some metrics are selected to create a score. The contributions to PC2 of correlation,
sum average and IMC1 metrics, which are representative of synthetic datasets, will be included
in the fidelity score as penalties, using the associated correlation contributions. This will place
greater emphasis on the metrics that are representative of real datasets.

2.4.5.4 Results with the different scores

Several indices need to be considered when quantifying the fidelity of images due to the
complexity of real scenes. Therefore, we propose a set of fidelity scores with respect to the

74

[L2.9] Final POCs

different features (Textural features and Wavelet based feature) including models described in
section 2.4.5.2 and the contribution of selected Haralick metrics. This set provides a more com-
prehensive assessment of fidelity. The sub-score sH based on the Haralick metrick contribution
(2) is defined by the following equation :

sH =
1

5
(λ2KV ar,2 + λ2KSvar,2+

(1− λ2KCorr,2) + (1− λ2KSA,2) + (1− λ2KIMC1,2))
(3)

where KV ar,2, KSvar,2, KCorr,2, KSA,2 and KIMC1,2 are respectively the contributions to PC2 of
Var, Svar, Correlation, SA and IMC1 metrics. λ2 is the eigenvalue associated to the PC2. Equa-
tion 3 is using arithmetic average of the correlation contributions λ2Ki,2 of selected metrics. It
take into account all the best contribution to PC2 for both synthetic and real datasets.

Table 11: Fidelity scores (%) computed from the synthetic and real datasets.

Datasets Synthia GTA vKitti Kitti Cityscapes
Cross-GlNet 10.42 12.03 0.05 99.81 96.67

WLet-Net 3.60 4.30 51.21 96.85 98.05
sH 41.80 48.14 34.10 62.42 72.76

Table 11 presents the fidelity scores of synthetic and real datasets using the proposed meth-
ods, including model-based and Haralick metrics. While the scores from real datasets provide
valuable context, the primary focus is on assessing the fidelity of synthetic data. The results
reveal a significant gap between synthetic and real data, with synthetic datasets exhibiting rela-
tively low fidelity in terms of texture and frequency aspects. To further validate the effectiveness
of our method, we propose comparing the GTA dataset with enhanced versions where photo-
realism has been improved using a GAN-based image translation method [54]. The goal is to
enhance the GTA dataset’s photo-realism by adopting styles from real datasets like Cityscapes
and Mapillary Vistas. Figure 63 presents some images from these datasets. Table 12 presents the
fidelity scores of these enhanced datasets, showing a significant improvement in fidelity across
models and sH. Our proposed method provides a quantitative measure of the level of fidelity
in synthetic datasets, offering valuable insights into their realism and similarity to real-world
data. The improved scores of the enhanced GTA datasets validate our hypothesis, showcas-
ing the effectiveness of GAN-based image translation methods in enhancing photo-realism and,
consequently, fidelity.

2.4.5.5 Results with the merging of scores with multi-criteria combination rule ([50]

In a second stage, we have proposed to build a multi-criteria combination rule in order to
merge the different scores generated by the first processing stage. Hence, it is pertinent to
examine the impact of the results using the multi-criteria approach. The Cityscapes dataset
serves here as a reference. The four scores calculated for each dataset, corresponding to the
four criteria, as shown in Fig. 64.

Fig. 65 illustrates the graphs obtained from the multi-criteria combination and the generation
of BBA with BBF (see the explanation in [50]. They will help to establish a level of fidelity (H)
or non fidelity (notH), the level of uncertainty (Omega), and the detection of conflict (Empty)
between scores. Table 13 details the parameters used to produce these graphs. Each criterion
has been assigned reliabilities α and τ values. The τ values are set here to be pessimistic with

75

[L2.9] Final POCs

Figure 63: Images from GTA V, GTA/Cityscapes and GTA/Mapillary datasets.

Table 12: Final scores obtained with the enhanced synthetic datasets(%) GTA V to Cityscapes (GTAV/City) and
GTA V to Mapillary (GTAV/Map) compared to the original GTAV dataset.

Datasets GTAV GTAV/Map GTAV/City
Cross-GlNet 12.03 21.04 42.32

WLet-Net 4.30 29.92 59.63
sH 48.14 81.89 82.54

τ = 0.6 (model tends to allocate mass on H). For the time being, τ is fixed, but it will be
optimised as part of a future work. The reliabilities associated with the criteria, obtained from
the learning-based models, correspond to models’ accuracy. These accuracies are computed
using functions from the the Keras/TensorFlow framework. The reliability assigned to the SH

criterion is set to 0.5 as it is impossible to obtained a similar accuracy to the learning-based
methods.

Table 13: Reliability α and τ associated to each criterion Sc with a certain value for three datasets.

Criteria GTA V GTA/Map Cityscapes
value α τ value α τ value α τ

Sc1 0.12 0.92 0.6 0.21 0.64 0.6 0.97 0.99 0.6
Sc2 0.04 0.97 0.6 0.30 0.73 0.6 0.98 0.99 0.6
Sc3 0.11 0.90 0.6 0.37 0.70 0.6 0.99 0.99 0.6
Sc4 0.48 0.50 0.6 0.82 0.50 0.6 0.72 0.50 0.6

The graph on the left in Fig. 65, for the GTA dataset, indicates that it has a strong tendency
to H with 97%, as well as 2% of conflicts. These results suggest that the GTA V dataset is
not faithful to reality. The graph on the right, resulting from the generation of BBA, present
the outcomes concerning the triplet of hypotheses H,H,Ω for each criterion. This allows us to
obtain detailed results for each criterion with m(H) = 0%, 0%, 0%, 2%, m(H) = 73%,95%,
74%, 0%, m(Ω) = 27%, 5%, 26%, 98%. We can see that criterion 4 shows a tendency of 2% to
H and an uncertainty of 98%.

Concerning the GTA/Map dataset, it indicates a weaker tendency to H than the GTA V
dataset with 23%. It also includes 25% of H , 38% of uncertainty and 15% of conflicts. Con-
cerning the triplet of hypotheses : m(H) = 0%, 0%, 0%, 40%, m(H) = 29%, 11%, 1%, 0%,

76

[L2.9] Final POCs

Figure 64: Overview of the multi-criteria combination method for the assessment of a global fidelity score involv-
ing uncertainty and potential conflict detection. (Source: UGE)

m(Ω) = 70%, 89%, 99%, 60%. While the level of uncertainty is very high for all criteria, the
first shows a significant tendency to H and the fourth an increasing tendency to H with 40% and
an uncertainty of 60 %. This shift of H , which correspond to a level shift of non fidelity from
97% to 24%, suggests an improved fidelity of the enhanced GTA dataset compared to the GTA
V dataset. The third row of the figure shows the graphs for the real Cityscapes dataset. These
results serve as an ideal basis for datasets requiring to be faithful to real-world scenarios. The
presented study is done on the full datasets but could be relevant on specific synthetic images
in order to have the capability to explain specific scores.

77

[L2.9] Final POCs

Figure 65: Graphs resulting from the multi-criteria combination (left) and the generation of BBA with BBF
(right).(Source: UGE)

2.5 Final Implementation

2.5.1 Implementation basis

This section explores the essential aspects of implementing the synthetic dataset genera-
tion framework for visual perception in adverse scenarios and autonomous driving, focusing on
leveraging specific platforms and tools. As shown in the Figure 46, the implemented SiVIC-
ADVeRSce framework deploys an instance of integration between two interconnected software,
RTMapsTM and Pro-SiVICTM. Data Distribution Service (DDS) as the communication mecha-
nism is integrated within the framework, which offers an effective and interoperable Application
Programming Interface (API) for seamless data sharing and communication among the various
components.

2.5.2 Environment and System Modelling

The simulated environment models aim to mimic the complexity and diversity of real-world
driving situations, allowing the generation layer to be controlled and repeatable. In the frame-
work, the capabilities of Pro-SiVICTM are used to craft realistic and intricate virtual environ-
ments, encompassing road networks, traffic conditions, weather phenomena, pedestrians, ve-
hicles, and various objects. The environment model tested within the framework comprises
a digital twin derived from the digital twin constructed at the Satory test track, as illustrated
by Gruyer et al [55], and also two simulated scenes (Highway and City center) as depicted in
Figure 40.

Autonomous driving systems perform various critical functions within their operating envi-
ronment, encompassing perception, localization, decision-making, path planning, control, and
more. Constructing a realistic and complex dataset for perception functionalities necessitates
the utilization of a comprehensive simulated sensor suite, enabling the vehicle to perceive its

78

[L2.9] Final POCs

surroundings through cameras, LiDAR, radar, and other sensors. In SiVIC-ADVeRSce, the vi-
sual perception system is equipped with multi-sensors derived from Pro-SiVIC™, previously
validated within the digital twin of the Satory test track [56]. Moreover, the virtual vehicle
model is integrated into Pro-SIVICTM, featuring dynamic modeling containing the car body,
shock absorber, wheels and tires, powertrain, and steering wheel. The interaction of this com-
plex model with the ground and other objects is facilitated by a raytracing engine embedded
within the simulation engine. For controlling the vehicle and pedestrian models, various modes
are available, including ”human control,” ”trajectory following,” ”control/command,” and ”con-
trol from RTMapsTM (the control system deployed).”

2.5.3 Scenarios Management

The scenario management operates on an event-based paradigm. Initially, the environment
elements are rendered within Pro-SiVICTM according to the specified scenario configuration,
instantiation as a Script file, which also initialises various events and their corresponding vari-
ables. Subsequently, a scenarios manager is integrated as a module within RTMapsTM. Within
each frame, information sources from Pro-SiVICTM are forwarded to this module as either ob-
servation or sensor data. Leveraging this observation, the event variables are computed and
updated accordingly. Upon the occurrence of an event, such as a vehicle deviating from the
road or a collision appearance, the event command is communicated to Pro-SiVICTMvia the
aforementioned DDS mechanism. Within Pro-SiVICTM, diverse actions are performed based
on the command and parameters shared by the manager, including the modification in dynamic
and static aspects. This mechanism allows for generating a loop of scenarios with interval val-
ues for variables and parameters under test, i.e., for vehicle, environment, weather conditions,
etc. In order to have a clearer overview of what is needed in order to define, execute, and anal-
yse scenarios, the reader can use the generic framework presented in figure 36 of the section
2.3.1. This framework in share into 3 main parts or layers: The scenario definition, the scenario
execution, and the results analysing.

79

[L2.9] Final POCs

2.5.4 Digital Models developed in the framework of PRISSMA or associated projects

2.5.4.1 Satory test tracks

Figure 66: Digital Model of the Satory’s test track (Source UGE).

Figure 67: Digital Model of the Satory’s test track in comparison with real test track (Source UGE).

80

[L2.9] Final POCs

2.5.4.2 Transpolis test tracks

Figure 68: View of the Transpolis test tracks.

Figure 70: Digital Model and HD Maps (Transpolis), a long and resource consuming procedure (source: UGE).

81

[L2.9] Final POCs

Fi
gu

re
69

:D
ig

ita
lM

od
el

de
ve

lo
pe

d
fo

rT
ra

ns
po

lis
te

st
tr

ac
k

(s
ou

rc
e:

U
G

E
).

82

[L2.9] Final POCs

2.5.4.3 Paris2Connect open area

Figure 71: Digital Model in progress for the Paris2Connect Use case in PRISSMA (source: UGE and VALEO).

Figure 72: Digital Model and Ambient Occlusion Map, a mandatory rendering mechanism in order to improve
significantly the image fidelity (source: UGE and VALEO).

2.5.5 Adverse Features and simulation under complex scenarios

We’ve employed a mechanism of adapted rendering integrated into the Pro-SiVICTM engine
to enhance the implementation of adverse features within the implemented framework. This
mechanism, presented in deliverable 2.5 of the WP2 of PRISSMA, enables the generation of
disturbances affecting both sensors and vehicle behaviour. It benefits from the definition and
utilisation of various rendering plug-ins, such as HDR textures, shadows, filters, and tone map-
ping, tailored to specific requirements.

Through the employment of a multiple-filters mechanism, diverse adverse conditions can be
defined. These include light filters (headlight with light map), weather condition filters like
rain (comprising rainfall and raindrops), fog, and snow(snowfall), as well as sensor degradation
effects such as noise, blur, depth of field, optical deformation, self-exposure, and auto-focus.

83

[L2.9] Final POCs

Fi
gu

re
73

:S
cr

ee
ns

ho
to

ft
he

D
ig

ita
lM

od
el

us
ab

le
in

th
e

D
ig

ita
lS

ha
do

w
s

Pa
ri

s2
C

on
ne

ct
(s

ou
rc

e:
U

G
E

an
d

VA
L

E
O

).

84

[L2.9] Final POCs

Furthermore, the multiple reflection mechanism enables close-realistic environmental reflec-
tions on the car body, windows, wet roads, and other surfaces, as presented in deliverable 2.5 of
PRISSMA dedicated to the definition of interfaces and simulation environment for evaluation
and validation procedures.

By adjusting the parameters of these mechanisms, a spectrum of adverse conditions with
different degrees can be obtained, allowing for generating a comprehensive dataset.

This complex and adverse scenarios generation cabability is essential in order to test the
performance of an AI-powered system under various challenging conditions covering the larger
possible operating space. In addition to adverse weather or low lighting as mentioned previ-
ously, this level of simulation allows to generate unexpected obstacles. These complex scenar-
ios can be difficult to replicate in real-world testing, which makes simulation tools and virtual
environments more essential. The use of simulation allows for the creation of complex scenar-
ios that can be repeatedly tested, analysed, and modified to evaluate, analyse, and improve the
performance of the system. One example we used in the experiment is Pro-SiVICTM, which
offers a range of adverse scenarios, as shown in Fig. 74.

Figure 74: Adverse scenarios from Pro-SiVICTM (Source: UGE)

The related metrics can vary depending on the specific application and system requirements.
However, some common metrics for this level of evaluation include:

• Robustness: This metric evaluates the ability of the system to perform consistently and
accurately in various challenging and unforeseen situations, and is usually reflected in
various performance metrics, such as accuracy, precision, recall, and F1-score, etc. Ro-
bustness can be measured by analysing these performances in different scenarios and
under different conditions, and also by assessing their ability to maintain performance
levels over time.

• Reliability: This metric evaluates the system’s ability to make reliable decisions in emer-
gency situations or other adverse situations.

2.5.6 Datasets Collection and Annotation

During the simulation instance, perception data and reference data are collected via the mod-
ule in RTMapsTM by the data-sharing mechanism mentioned above. For example, as depicted
in Figure 40(b), simulated image frames generated in Pro-SiVICTM are captured and recorded
by the sensor module defined in RTMapsTM to build the dataset.

85

[L2.9] Final POCs

Several mechanisms integrated into the Pro-SiVICTM have been employed to generate the
reference data. One approach involves modifying the rendering texture of objects and the envi-
ronment (such as vehicles, pedestrians, lanes, roads, buildings, etc.), which results in segmenta-
tion masks (shown in Figure 40(d)) being generated and collected as a part of reference data. In
addition to visibility-based mechanisms, a specific mechanism known as the ”observer” in Pro-
SiVICTM enables the real-time generation of the state vector of different objects in the scene
(including vehicles, pedestrians, static objects, and road configurations). Notably, the depth
matrix (visualized in Figure 40(c)) of sensors can also be collected as reference data, which
may contribute to the refinement of annotation and enhancement of the dataset.

As defined in the conceptual framework, the annotation labels are generated according to the
configured annotation schema from the upstream layer. In the implemented SiVIC-ADVeRSce
framework, by leveraging various mechanisms for reference data generation, we have provided
several annotation schema possibilities, each corresponding to different functional aspects of
perception. Primarily categorised into object, semantic, and temporal domains, these annotation
schemas enable comprehensive annotation of multi data modalities.

Within object annotations, we aim to obtain the precise annotation of objects through bound-
ing boxes, polygons, and pixel-level masks. Figure 41 shows the different object annotations in
the implemented framework. The second type of annotation implemented in SiVIC-ADVeRSce,
namely semantic annotations, targets the whole perception data and enables extracting coherent
sub-segments or regions and assigning meaningful labels to each segment based on its seman-
tic content. Furthermore, SiVIC-ADVeRSce extends its annotation schema to encompass the
temporal aspect, allowing the annotation of timestamps, events, and temporal segments. This
feature aligns with the virtual timestep in Pro-SiVICTM, ensuring accuracy and consistency.

The proposed Cycle-GAN based model consists of two generators and one discriminator.
The process involves taking input data from the synthetic domain and passing it through the
generator 1 to transform it into the real domain. Subsequently, the transformed image is passed
back to domain synthetic through the generator 2 in order to keep the initial image content (cycle
consistency). The generator 1 generates a prediction (enhanced output data) that is then passed
to the discriminator along with real samples. The discriminator classifies them, through back-
propagation, as real or fake, providing a signal that enables the generator to update its weights.
Unlike Cycle-GAN, the proposed method uses a single cycle with a single discriminator in
order to reduce the time-consuming process. The two generators are identical, based on Unet
architecture [57]. They consist of two encoders based on pre-trained ResNet to extract features
from the fog image and depth maps. The weights of the encoders’ selected layers are then
fused with a spatial feature transform layer that generates affine transformation parameters for
spatial-wise feature modulation. The resulting outputs passed through Attention layers before
being fed into the decoder. The discriminator consists of a classical Patch-Gan [58] architecture.

The experiments were carried out using the Keras/Tensorflow frameworks. The ADAM
optimizer is used for both generators and discriminators with a learning rate of 0.0002. The
model is formed on foggy data, with around 300000 iterations and a batch-size of 1, due to the
limited memory capacity. The synthetic domain contains 950 images of the foggy virtual Kitti
dataset [59] and the real domain contains 1003 images from the RTTS subset of the RESIDE
dataset [60].

2.6 BuSAS DataSets generation and analysis

To assess the applicability and effectiveness of the proposed SiVIC-ADVeRSce framework,
we employed BuSAS application of PRISSMA PoC, to generate a dataset containing different

86

[L2.9] Final POCs

adverse scenarios for evaluating the visual perception system.

2.6.1 DataSet generation

According to the use case and requirements of the project, ODD and OEDR can be specified
follows:

Category Details

Objects Vehicles, immobile structures (e.g., bus stations)
Event Vehicle dynamics (deceleration, acceleration, emergency stop), ego

vehicle nearing bus station, expired waiting duration
Detection Vehicle identification (classification, localisation, tracking), bus sta-

tion localisation, self-perception
Response Obeying speed limits, following vehicles, emergency braking, dock-

ing at the bus station, returning to ego lane

Scenery Urban area, bus stations
Infrastructure Configuration of roadway, road markings
Environment Weather conditions (clear sky, rain, fog) and light conditions (day-

light)
Vehicle Capabilities Speed up to 20 kph, docking / stopping / restarting at bus stations,

lane centering and keeping
Traffic Condition Fluid and congested traffic conditions, presence of other road users

(vehicles and pedestrians)
Key Scenes 6 scenarios of use

Based on the ODD and OEDR, our perception system incorporates a monocular camera de-
signed in Pro-SiVICTM, complemented by a module in RTMapsTM for sensor data acquisition.
For the scenarios, we utilize the digital twin of the Satory test track as the primary setting,
supplemented by virtual city center and highway scenarios rendering in Pro-SiVICTM.

To simulate adverse weather conditions, we equipped the camera with seven weather filters.
The baseline filter represents clear skies, serving as a reference. The remaining six filters are tai-
lored to replicate various adverse conditions: 1) Three fog filters, following to the Koschmieder
law, provide a graduated representation of homogeneous fog densities. 2) Rain filters offer vi-
sual effects by combining two main factors: one simulates the visual rain effect in the skies, and
the other mimics raindrops on the camera lens or windshield, both with three intensity levels to
reflect different rainfall severities. Figure 75 details the parameters for these filters.

Following pre-defined weather conditions, seven distinct groups of datasets are generated
from SiVIC-ADVeRSce, each consisting of approximately 10,000 images (± 300). These
datasets included various simulated vehicles, pedestrians, and multiple driving scenes. Dif-
ferent camera perspectives were integrated, including frontal and rear views from the collect
vehicle, alongside proximal and distal viewpoints. Annotations are generated in compliance
with the specifications outlined in ODD and OEDR, with the objective of promoting the effec-
tive utilization of datasets for by the functions of the visual perception system.

In order to demonstrate the evaluation of visual multitasks using the generated datasets,
we have chosen two CNN-based algorithms: YOLOv5 [61] and YOLOv8 [62] for detection
and segmentation, in cooperation with DeepSORT [35] for tracking. The evaluation values
and relevant metrics for AI evaluation are presented in Table 15. The results demonstrate a
distinct correlation between weather conditions defined in our synthetic BuSAS datasets and
performance metrics. For instance, adverse rain conditions notably degrade most metrics. On

87

[L2.9] Final POCs

(a) Related parameters of fog situations

(b) Related parameters of raindrop in the sky

(c) Related parameters of raindrop on the windsheid

Figure 75: Parameters of different weather filters defined in Pro-SiVICTM

the contrary, while fog levels affect metrics to a lesser extent, the impacts are still captured,
especially in improving precision accompanying the reduction of visibility. This indicates the
effectiveness of the dataset in representing adverse weather conditions, thereby proving to a
certain extent the applicability and practicality of the SiVIC-ADVeRSce framework.

2.6.2 DataSet extension

The use of the image translation method presented in the downstream layer of the Figure 76,
allows to provide some image variations of the foggy synthetic images.

Figure 76 presents some post-processed foggy images taken from the BuSAS dataset. The
inputs of the method are the synthetic foggy images and the depth information, illustrated in
Figure 40(c). The generated images introduce some variations to the existing foggy images
in order to expand the BuSAS dataset. Notably, there are noticeable variations in the hue and
luminance of the fog within the scenes. Moreover, in the last month, some AI-based generative
methods have been applied on synthetic images coming from Pro-SiVIC in several environment
like Satory test tracks and Transpolis test tracks. The results are presented in figures 77, 81, 82,
78, 79, and 87. Some work need to be done in order to manage and to guarantee the spatial and
temporal consistency of the improved images. Moreover, improvements of the methods need to
be done in order to reduce significantly the processing time.

88

[L2.9] Final POCs

(a) City Centre scenarios: synthetic images and corresponding variations

(b) Highway scenarios: synthetic images and corresponding variations

(c) Test track scenarios: synthetic images and corresponding variations

Figure 76: Example of some post-processed foggy images (slight and dense fog) from the BuSAS dataset generated
with the unpaired image translation method. The generated images have been resized.

2.6.2.1 Satory’s test track synthetic images improvement

Figure 77: Improvement of the quality of the rendering for a synthetic image generated from Pro-SiVIC on the
Satory’s test tracks with foggy and rainy conditions. The first image on the top left is the initial generated image
from Pro-SIVIC. The height other images are generated from AI-based methods with different parameters allowing
to fit with the initial image. (Source: UGE). 89

[L2.9] Final POCs

Figure 78: Improvement of the quality of the rendering for a synthetic image generated from Pro-SiVIC on the
Satory’s test tracks with clear weather conditions. The first image on the top left is the initial generated image from
Pro-SIVIC. The 5 other images are generated from AI-based methods with different parameters and environment
variations allowing to fit with the initial image. (Source: UGE).

Figure 79: Improvement of the quality of the rendering for a synthetic image generated from Pro-SiVIC on the
Satory’s test tracks. The top left image is the initial image generated from Pro-SiVIC. The other ones are generated
from AI-based methods. In this AI-based generation, the rain drops are removed and the fog is kept with some
effect of smoke cloud (Source: UGE).

90

[L2.9] Final POCs

Figure 80: Improvement of the quality of the rendering for a synthetic image generated from Pro-SiVIC on the
Satory’s test tracks. The top left image is the initial image generated from Pro-SiVIC. The other ones are generated
from AI-based methods. (Source: UGE).

2.6.2.2 Transpolis’ test track synthetic images improvement

Figure 81: Improvement of the quality of the rendering for a synthetic image generated from Pro-SiVIC on the
Transpolis’ test tracks. The top left and bottom left images are the initial images generated from Pro-SiVIC. The
other ones are generated from 2 AI-based methods (Source: UGE).

91

[L2.9] Final POCs

Figure 82: Improvement of the quality of the rendering for a synthetic image generated from Pro-SiVIC on the
Transpolis’ test tracks. The top left image is the initial image generated from Pro-SIVIC. The other images are
generated from AI-based methods with a variation of some parameters (Source: UGE).

Figure 83: Improvement of the quality of the rendering for a synthetic image generated from Pro-SiVIC on the
Transpolis’ test tracks. The top left image is the initial image generated from Pro-SiVIC. The other ones are
generated from AI-based methods. In this AI-based generation, it is possible to see the different variations applied
to the road in an intersection area. (Source: UGE).

Figure 84: Improvement of the quality of the rendering for a synthetic image generated from Pro-SiVIC on the
Transpolis’ test tracks, in the countryside part. The top left image is the initial image generated from Pro-SIVIC.
The other images are generated from AI-based methods with a variation of some parameters (Source: UGE).

92

[L2.9] Final POCs

Figure 85: Improvement of the quality of the rendering for a synthetic image generated from Pro-SiVIC on the
Transpolis’ test tracks, in the countryside part. The top left image is the initial image generated from Pro-SiVIC.
The other ones are generated from AI-based methods. In this AI-based generation, it is possible to see the different
variations applied to the road in an intersection area. (Source: UGE).

2.6.2.3 Motorway synthetic images improvement

Figure 86: Improvement of the quality of the rendering for a synthetic image generated from Pro-SiVIC on a
motorway with fog and wet road surface. The left image is the initial image generated from Pro-SIVIC. The other
images are generated from AI-based methods with a variation of some parameters. Some corrections and variations
are given on the colour and the general colour of the scene (Source: UGE).

93

[L2.9] Final POCs

Figure 87: Improvement of the quality of the rendering for a synthetic image generated from Pro-SiVIC on a
motorway with clear weather conditions. The top left image is the initial image generated from Pro-SIVIC and
used as a seed. The other images are generated from AI-based methods with a variation of some parameters. On the
images on the bottom, it is possible to appreciate the capacity of extrapolation of the AI-based generative method.
(Source: UGE).

2.6.3 Evaluation and validation results

2.6.3.1 System and Environment

In our experimental setup, we use a visual perception system based on a monocular camera.
This system is implemented as a module within the RTMapsTM framework and is an extension
of the driving system developed in the H2020 Trustonomy project [63]. The camera-based
perception system is specifically designed to provide essential functionalities such as object
identification, localisation, and tracking.

For the purpose of our simulations, the module-based ADS operates within the Pro-SiVICTM

rendering environment. To replicate real-world scenarios, we utilise the digital twin of the
Satory test track within Pro-SiVICTM. This virtual representation of the test track has undergone
validation using an existing perception system equipped with a set of various sensor types and
technologies.

2.6.3.2 Scenarios generation

To evaluate our framework’s genericity, we developed a full bus stop service in RTMaps and
the full environment with vehicles, sensors, infrastructures, and building in Pro-SiVICTM. This
set of models and modules is used for the evaluation of a visual perception system equipped
with different AI models.

As shown in Fig. 88, the service and the situations that could be encountered are modelled
with a set of 6 scenes. The continuous assembly of these scenes along a 3.4 km trajectory on
the Satory’s test track allows for the construction of a tree of possible scenarios. The vehicle
trajectory includes 4 or 5 types of bus stations. The simulated environment comprises different

94

[L2.9] Final POCs

types of bends and straight lanes. The ego vehicle is restricted to driving on its ego-lane, while
other traffic objects can perform cut-in and cut-out manoeuvres on different lanes.

The ODD is the following: Ego vehicle travels on the right lane of the predefined road at a
maximum speed of 20 km/h, while maintaining a safe following distance and performing car-
following manoeuvres when a front vehicle is detected. The vehicle’s primary objective is to
ensure the safety of passengers and road users by avoiding collisions and adapting its speed
to traffic conditions, visibility caused by different weather conditions, and the environment.
Additionally, the vehicle stops at the bus station to allow passengers to board and alight. After
the stop, the vehicle utilises dedicated longitudinal and lateral profiles to return to the centre of
the right lane and resume driving.

Figure 88: 6 scenes for the docking at a bus station

2.6.3.3 Algorithms and models

To achieve the system functionalities, we have selected two renowned visual perception al-
gorithms: YOLOv5 [61] and YOLOv8 [62], along with their respective models: v5s and v8s. In
addition to the object detection models, we have also incorporated two corresponding instance
segmentation models (v5s-seg and v8s-seg), aiming to provide more detailed information about
object boundaries within an image.

To further enhance the system’s capabilities for large-scale diverse driving, we retrained and
fine-tuned the models using the BDD100K dataset based on the previous COCO dataset [64],
the training phase is equipped with a 16-core Intel i9-12950HX 2.30 GHz CPU and NVIDIA-
GTX A4500 GPU core graphics card.

2.6.3.4 Deployment and execution

After the training phase, we deployed the trained model into the software platform RTMapsTM

(C++ support), in order to perform the model as a functioning part of the perception system and
interconnect with the simulator. During the deployment, we used TensorRT C++ API to op-
timize the model for inference (with precision FP16), which is based on NVIDIA’s Compute
Unified Device Architecture (CUDA). The setup environment and tools contain CUDA 10.2,
PyTorch 1.10.1, cuDNN v8.2.1 corresponding to CUDA, TensorRT 8.2, and Visual Studio 2017
(v141).

95

[L2.9] Final POCs

2.6.3.5 Evaluation and result

We proposed 3 levels of evaluation for this visual perception system equipped with different
YOLO models.

Scenarios level
We have defined seven weather filters on the camera as shown in Fig. 89. The first scenario
representing a clear sky is the reference. The remaining scenarios focus on simulating var-
ious weather conditions. We have categorized homogeneous fog into three levels using the
Koschmieder law, ensuring an accurate representation. For rain, we have incorporated two fil-
ters. The first filter replicates a waterfall effect, while the second mimics raindrops on a camera
lens or windshield. Similarly, we have created three different levels of intensity to simulate
varying degrees of rain.

Component level
We curated seven distinct groups of datasets, each consisting of approximately 10,000 images
for detection and instance segmentation, organised based on predefined weather conditions. For
tracking, the datasets are 7 groups of real-time videos. These datasets included various types of
simulated vehicles, such as cars and trucks, navigating the Satory test track. Different camera
perspectives were incorporated, including front and rear views of the ego vehicle, as well as
close and distant perspectives. The performed results were evaluated using a set of metrics. The
evaluation values are presented in Fig. 89.

The results clearly demonstrate the influence of different weather conditions on the metrics.
Adverse rain weather significantly impacts mAP, indicating difficulties in accurately detecting
and localizing objects under heavy rain conditions. In contrast to the impact of adverse rain
weather, varying levels of fog have a relatively lesser effect on the metrics. While there is still
a decrease in the mAP with increasing fog levels, it is not as pronounced as the impact of rain.
However, it is worth noting that there is a consistent increase in precision as the degree of fog
increases. This suggests that fog has a discernible influence on improving precision by reducing
background interference and minimizing the impact of distant objects.

Comparing the performance of v8s and v5s, it is observed that v8s generally achieves slightly
higher metric values. However, when it comes to object tracking, v5s demonstrates a lower
MOTP than v8s. This indicates that v5s exhibits higher precision in tracking object locations.
The disparity in tracking performances may be attributed to the frequency, as v5s benefits from
a higher update rate and more frequent predictions, leading to improved tracking precision.

System level
In comparison to the instance segmentation model, both v5s and v8s models demonstrate higher
accuracy in providing boundary information, as reflected by mIOU. Hence, we have incorpo-
rated these two models into our system and evaluated their performance under bus stop scenar-
ios. Specific KPIs were calculated based on the real-time results obtained from the system, as
in Tab. 14.

While v8s demonstrates higher detection and tracking capabilities than v5s, it also exhibits
an increase in tracking time under adverse rain weather. This suggests that more objects may
be detected due to the presence of raindrops on the lens, and YOLOv8 proves to be more
sensitive in this scenario. On the other hand, under foggy conditions, both system frequencies
are reduced, indicating that fewer remote objects are detected due to the degree of fog.

96

[L2.9] Final POCs

Tab. 14 also presents the evaluation results obtained using collision probability and risk of
collision based on TTC. We calculated the mean value specifically for critical scenarios. No-
tably, the risk across all groups was found to be low primarily because our scenarios involve
low speeds, resulting in a low likelihood of injury. However, the risk can still indicate height-
ened safety concerns in moderate and heavy rain weather conditions, similar to the collision
probability.

Table 14: First round: Evaluation value of system metrics for object detection

Clear Sky Light Fog Moderate Fog Dense Fog Light Rain Moderate Rain Heavy Rain

v5s v8s v5s v8s v5s v8s v5s v8s v5s v8s v5s v8s v5s v8s

Perception
Specific KPIs

Success Rate (%) 62.7 64.4 55.1 65.0 48.5 51.9 45.3 36.9 49.7 62.8 37.7 53.5 12.6 31.9

Mean Tracking Error (m) 2.30 1.91 2.25 1.72 1.67 1.48 1.31 1.44 2.49 2.33 2.14 2.43 3.51 2.68

Time
Specific KPIs

Detection time (ms) 20 36 21 37 19 36 19 36 19 36 19 36 20 37

Tracking time (ms) 72 104 67 90 59 76 55 68 67 110 60 152 58 174

System frequency (Hz) 16 11 17 13 17 14 18 16 16 11 17 8 18 8

Risk
Specific KPIs

minimal TTC (s) 1.27 1.82 1.52 1.83 2.02 1.83 1.93 2.02 1.79 1.70 - - - -

Mean Collision Probability (%) 31.7 26.7 30.1 28.5 26.1 27.4 24.0 23.8 27.6 28.5 45.8 37.4 47.2 36.4

Mean Risk (%) 3.77 2.75 3.23 2.76 3.03 2.75 2.85 2.78 2.90 2.78 8.51 4.84 8.93 5.04

Crash ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✔

97

[L2.9] Final POCs

Fi
gu

re
89

:F
ir

st
ro

un
d:

R
es

ul
to

fA
I-

ba
se

d
ob

st
ac

le
s

de
te

ct
io

n
on

di
ff

er
en

tw
ea

th
er

co
nd

iti
on

s
at

co
m

po
ne

nt
le

ve
l

98

[L2.9] Final POCs

Table 15: Second round: Evaluation value of detection, instance segmentation and tracking

Clear Sky Light Fog Moderate Fog Dense Fog Light Rain Moderate Rain Heavy Rain

v5s v8s v5s v8s v5s v8s v5s v8s v5s v8s v5s v8s v5s v8s

Precision
Detection 0.653 0.807 0.743 0.829 0.911 0.881 0.908 0.889 0.691 0.779 0.679 0.784 0.402 0.616

Segmentation 0.657 0.596 0.698 0.642 0.808 0.779 0.812 0.832 0.529 0.537 0.51 0.571 0.325 0.325

Recall
Detection 0.7 0.727 0.667 0.655 0.603 0.574 0.496 0.468 0.561 0.638 0.544 0.602 0.334 0.374

Segmentation 0.533 0.507 0.472 0.557 0.467 0.523 0.402 0.431 0.393 0.416 0.359 0.382 0.129 0.189

F1 Score
Detection 0.655 0.764 0.697 0.726 0.712 0.672 0.627 0.599 0.608 0.683 0.6 0.661 0.365 0.444

Segmentation 0.587 0.536 0.56 0.596 0.566 0.621 0.521 0.554 0.449 0.469 0.422 0.457 0.185 0.239

mAP50
Detection 0.699 0.806 0.723 0.751 0.673 0.658 0.57 0.549 0.632 0.744 0.607 0.705 0.326 0.438

Segmentation 0.56 0.506 0.529 0.61 0.54 0.608 0.467 0.523 0.408 0.461 0.369 0.442 0.119 0.171

mAP50-90
Detection 0.498 0.589 0.512 0.552 0.497 0.501 0.436 0.43 0.414 0.497 0.398 0.474 0.176 0.26

Segmentation 0.359 0.354 0.336 0.421 0.349 0.434 0.314 0.395 0.242 0.284 0.214 0.279 0.0576 0.0926

mIOU
Detection 0.508 0.627 0.555 0.593 0.578 0.542 0.474 0.447 0.474 0.535 0.458 0.511 0.238 0.307

Segmentation 0.431 0.38 0.413 0.449 0.425 0.453 0.375 0.413 0.329 0.335 0.295 0.315 0.105 0.137

IDF1 Tracking 0.769 0.648 0.71 0.745 0.655 0.67 0.629 0.524 0.665 0.631 0.557 0.478 0.224 0.281

ID Precision Tracking 0.957 0.639 0.961 0.845 0.953 0.899 0.971 0.849 0.963 0.621 0.999 0.425 0.867 0.247

ID Recall Tracking 0.642 0.658 0.564 0.666 0.499 0.534 0.465 0.38 0.508 0.641 0.386 0.546 0.129 0.327

MOTA Tracking 0.658 0.721 0.57 0.699 0.506 0.567 0.469 0.443 0.519 0.682 0.387 0.395 0.142 0.259

MOTP Tracking 0.453 0.659 0.565 0.523 0.55 0.476 0.549 0.927 0.463 0.379 0.528 0.561 0.503 0.512

FPS Tracking 16 11 17 13 17 14 18 16 16 11 17 8 18 8

*v5s and v8s are small-scale model, the corresponding segmentation models (v5s-seg and v8s-seg) are also employed for instance segmentation
task.
*All the model are re-trained and fine-tuned based BDD100K, experiments are based on 16-core Intel i9-12950HX 2.30 GHz CPU and NVIDIA-
GTX A4500 GPU core graphics card.

2.7 Discussion and Recommendations for future developments and improvements

The main ideas guiding the future works towards a more efficient evaluation and validation
framework consists to spend effort on the following actions:

• Define the scenario space with identification of influential parameters and variables con-
taining elements and adverse/degraded conditions impacting the AI-based system be-
haviour and operating. This task also involved to take into account intentional and non
intentional disturbances and interferences.

• At this moment, the evaluation and validation process has been applied on AI-based detec-
tion, identification, and tracking only on the Satory test track. It will be relevant to apply
the full architecture of POC 1 on the other environments (Transpolis, Paris2Connect) in
order to validate the full methodology presented in the figure 3 and figure 4. As presented
in the section dedicated to Digital Models, we have developed both the Digital Model of
Transpolis (already working in Pro-SIVIC) and the Digital Model of Paris2Connect (3D
model in obj format and needs to be implemented in Pro-SiVIC. Work expected in July
and August).

• Apply the interconnection of Pro-SIVIC to U-test from SPHEREA. The goal will be to
take into account the implementation made between CARLA and U-Test, and to take in
account this sub POC in the POC 1.

• Use the ANSYS’ softwares chain. ANSYS decided to put their efforts on POC 2 with
VALEO.

• Implement a set of cyber attacks on both the communication layer and the perception
layer. This work could be done with the WP5 outputs.

99

[L2.9] Final POCs

• Extend the current work on scores and fusion of score for the evaluation of the synthetic
data level of fidelity. A first method has been developed and provides interesting and
encouraging results

• Extend the current work on Generative AI in order to improve the quality of the synthetic
data in term of fidelity. [13] and [50]

• Development of the ImPACT 3D platform with interconnection between real and virtual
environment as presented in the figure 53 and figure 52

2.7.1 Future Developments on ImPACT 3D

ImPACT 3D (see figure 90) will be the final platform implemented in Satory for the generic
ViL evaluation and validation platform for CAV. This platform will consist of 2 parts. The first
part is called ImPACT 3D VA and concerns the real prototype with the Robotized Zoé. The
second part is ImPACT 3D VR&Motion which includes the 6DoF immersive platform, Zoé’s
cabin, the displays, and the computer control room (2 cabinets with 10 to 15 PCs to manage the
displays, the mirrors, the dynamic model controlling the 6DoF motion , applications (ADAS, C-
ITS, and automated and connected driving system), sensor simulations, simulation of means of
communication, and data collection/analysis). In addition ImPACT 3D will be a ViL, HiL, MiL,
and SiL platform. It is in this platform that the PROSIVIC, RTMaps, NS3, U-Test, MOSAR,
ANSYS suite, and potentially Scaner softwares will be interconnected and interfaced. At the
end of PRISSMA, it was expected to obtain a functional ImPACT 3D platform but it was not the
case. Some development are yet needed. At the end, this platform should be a generic, inter-
operable, and adaptive real/virtual platform. This work is in progress in the TEF CitCom.AI
and the HE Augmented CCAM project.

2.7.1.1 ImPACT 3D VA

The first one concerns the real prototype (Renault Zoé) with hardware, software architec-
tures, with embedded sensors, and with actuators (acceleration, braking, steering wheel). In
this prototype, a set of algorithms has been implemented. This algorithms concern mainly the
positioning with GPS and RTK GPS, and the virtual copilot ([65], [?]) allowing the L3 and L4
automation. The next step will be to implement the perception module (based on AI methods)
already developed in RTMaps (using PROSIVIC data and environment). The following fig-
ures show the scenario implemented in the UGE’s Renault Zoé in the framework of the H2020
TRUSTONOMY (European project). The same scenario was run both in real and virtual condi-
tions. In this scenario, the study was to assess the trust of the driver toward the virtual copilot.
In this scenario, obstacle detection and avoidance, lane change, and request to intervene were
implemented. The use case implemented in PRISSMA is a light version of this use case but
with new perception modules involving AI-based methods (obstacle detection/identification/-
tracking, and road marking detection).

100

[L2.9] Final POCs

Figure 90: ImPACT 3D architecture with real and virtual test facilities: ImPACT 3D VA and VR&Motion (Source
UGE).

Figure 91: TRUSTONOMY project: Virtual copilote implementation with L3 and L4 of automation in UGE’s
Renault Zoé (Source UGE).

101

[L2.9] Final POCs

Figure 92: TRUSTONOMY project: Virtual copilote implementation with L3 and L4 of automation in PROSIVIC
platform (Source UGE).

2.7.1.2 ImPACT 3D VR&Motion

The second do not yet use the 6DoF motion platform (work in progress) but use the inter-
connection of the following set of tools:

• NS3 in a virtual machine (Linux) and interconnected with PROSIVIC and RTMaps with
the library DDsL.

• RTMaps as the application environment allowing to implement the full bus station au-
tomated desert service. Specific packages and modules have been developed in order to
have an efficient interface between RTMaps and both PROSIVIC and NS3. This intercon-
nection allows to have a full loop and allows to control the actuators in the PROSIVIC’s
car model.

• Symuvia as traffic generator. The interconnection between Symuvia and PROSIVIC has
been done with the use and implementation of DDsL.

• PROSIVIC as the core of the platform with the simulation of the environment, the vehi-
cles and dynamic actors (pedestrians and other object), the sensors, and the propagation
channel for RADAR and communication simulation.

The figure 93 shows the existing implementation of the virtual copilot in RTMaps controlling
5 PROSIVIC’s vehicles with different modes of driving (Conscientious, normal, sportive). This
copilot also is working in the real Zoé prototype. The figure 94 presents the SiVIC MobiCoop
platform ([66]) with PROSIVIC interconnected to RTMaps and NS3. The interface with NS3
is made with the using of a Virtual Machine and DDsL (interface between Windows and Linux
OS). The figure shows the antennas and the link between the different transmitters/receivers.

102

[L2.9] Final POCs

Figure 93: PROSIVIC and RTMaps: An efficient platform for virtual copilote implementation with L3 and L4 of
automation (Source UGE).

Figure 94: PROSIVIC, RTMaps, and NS3: An efficient platform for C-ITS prototyping with physico realistic
communication means (Source UGE).

Moreover the scenario preparation stage is done by using of the set of following softwares:

• ROADS: road network generation and 3D mesh generation

• PathEdit: Trajectory generator and script building

• GRoTex: Road texture generator

2.7.2 CARLA and U-Test

2.7.2.1 Objectives

This sub project consists in integrating CARLA simulator and U-Test platform. The objec-
tive is to test and validate the ability to connect different autonomous driving system simulators
and hardware in the same co-simulation and in real time in order to achieve the second objec-
tive of the POC 1 : propose a complete and generic simulation architecture. By adding a new
simulator and connectable with any other equipment / simulator / system U-Test demonstrates
its capability to act as a real-time interconnection layer in a generic test system architecture.

103

[L2.9] Final POCs

2.7.2.2 Carla

CARLA is an open-source simulator that has been developed from the ground up to support
development, training, and validation of autonomous driving systems. It supports multiples
specifications of sensors, environmental conditions, maps generation; provide many realistic ve-
hicles with their real physicals characteristics, pedestrian, maps, a basic traffic manager, weather
simulation; and can be connected with other third-party tools for car physics simulation, driving
models, maps import and co-simulation...

Figure 95: Carla

2.7.2.3 U-Test

U-Test is a software solution developed by Spherea. U-TEST is architectured into three main
items composing an optimized and efficient core:

• Real-Time Core (RTC) : a deterministic and reliable real-time scheduler;

• U-TEST MMI : this graphical user interface allows to access the whole of U-TEST
functionalities;

• Dataspace or Variable Service (VS) : a very powerful and fast data sharing service, even
between remote computers;

104

[L2.9] Final POCs

Figure 96: U-TEST Solution (Source SPHEREA).

U-TEST offers a full set of features to spy, monitor, record the signals coming from a system,
or to generate the input signals toward this system. It was originally designed to conduct tests
on a system during several phases of its life cycle :

• During design phase, to make tests on simulated systems ;

• During integration phase, to carry out tests on under-components of the system, by mixing
or not the real elements and the simulated elements ;

• During validation/qualification phase of the system ;

• During production phase, for investigation, evolutions, and no-regression tests.

2.7.2.4 Architecture and state of project

Figure 97: Carla - U-TEST architecture (Source SPHEREA)

105

[L2.9] Final POCs

A driver was developed in U-Test to control Carla. It is based on a generic driver interface
offer by U-Test. The driver can drive a Car by an interface that maps Carla C++ API to the
U-Test driver. It is possible to move the car, steer, and control some physics aspect like mass,
center of mass, wheel max steer , . . .

There are not sensor interface yet. This sub project is not intended to implement a full
interface of Carla. However, a documentation explain how to add new implementations and
API connections.

A simple python script simulate a vehicle trajectory on a specific map to show a little demon-
stration. It’s possible to change this script by a more complex models that can interact with
U-TEST interface to drive the ego vehicle with a better precision and intelligence.

Figure 98: Carla demo Map (Town10HD) with circuit (in red)

The demonstration is performed with a dedicated Carla Computer. It works with a frequency
of 60 frame per second and U-Test still perform command successfully at this speed.

106

[L2.9] Final POCs

Figure 99: POC Running : Carla Vehicle driven by U-TEST (Source SPHEREA).

107

[L2.9] Final POCs

3 POC 2: Valeo Urban Driving (VALEO)

3.1 Presentation

In the scope of PRISSMA Project, Valeo Driving Assistance Research is developing an AD
Simulation Platform that aims at being a Digital Twin of the real Autonomous Driving System
used in Open Road and Proving Ground testing. Digital Twin as a global concept can be divided
in several activities in Virtual Testing activities. As described in the scheme below, a typical
AD system evolves in closed loop interaction with its environments as following:

Figure 100: Simulation architecture for the Valeo Urban Driving PoC 2

• The AD System contains the typical Plan-Act the decide on Strategic, Operational and
Tactical level the actions to be triggered by the Ego-vehicle

• The Sensor Stack gives to the AD System an Environmental model as sensed by sensors.

• The Vehicle receives actuation commands from the AD System which induce an evolution
of its position on the environment

• Environment is to be understood as everything that is not the EGO-vehicle. (i.e. traffics
and how they evolve on the road network, the road network, infrastructures. . .)

Based on this observation, we can then assert that each functional bloc stated above can be
replaced its digital counterpart or “Digital Twin”
As described below, it gives, as a result, the well known taxonomy mapping of X-in-the-loop
(Model/Software/Hardware/Vehicle/Driver).

108

[L2.9] Final POCs

Figure 101: Matrix of test possibilities for different component levels

Inside PRISSMA, the focus of the AD Digital Twin Simulation Platform is to develop a
Digital Twin in a sense of Software-In-The-Loop V&V toolchain. Consequently:

• AD Software is the real system, embedded in the middleware RTMaps® developed by
Intempora

• The Vehicle is digital, based on Vehicle Dynamics general model provided by IPG Car-
Maker®

• The Environment is digital, described in IPG Road 5, which is the proprietary format of
IPG to describe the road network and the 3D layout (infrastructure etc...).

• The Sensor Stack is digital in a sense that there would not be Object Tracking or Com-
puter Vision integrated in the loop. We would rather already semantic information the AD
System: the Traffic Sign, Traffic Light, GNSS sensor, Bounding-Box object detection as
provided in CarMaker

As all components are software based, there would not be any hardware in the loop, this SiL
method then will be launched faster than real time, which allow to cover more corner cases in a
fewer time.
On top of this closed-loop simulation, OptiSLang®, an Ansys software, is also used to mon-
itor parameters variations by overwriting the Test Run file description, which is an input for
CarMaker simulation. The goal is to perform variations of the functional left-turn scenario to
detect concrete scenarios where the ego vehicle would not meet the safety criteria. Through the
variations, a virtual assessment of the L4 function against various KPIs is performed.

3.2 Perimeter Definition

3.2.1 Description of the System Under Test

This chapter will focus on describing the system that is being tested in this simulation frame-
work, i.e. the AD Function Stack.
Replaced in the context of the whole PRISSMA project, it is to be noted that the function that is

109

[L2.9] Final POCs

tested here is completely consistent with the other WPs, especially, WP3 and WP4. Indeed, the
Software stack that is tested in WP2 will be the same as the one that will be tested in Proving
Ground (WP3) and in Open Road (WP4).
The system that will be demonstrated is the Fullway Pilot as described in the scheme above:

• Prediction : Functional bloc that, based on the perception of the scene model (Map,
Objects, Lines, Traffic Signs etc. . .), predicts the future behavior of the traffic participants
on the road.

• Planning: Functional bloc that, based on the predicted behavior of traffic participants
and scene model, will select the adequate maneuver and trajectory to be followed by the
EGO-vehicle.

• Control: Functional bloc that, knowing the maneuver and trajectory to be followed will
translate it into actuable actions more particularly steering wheel angle command [rad]
and Acceleration request [m/s²]

Figure 102: Overview of the IA System Under Test

The illustration shown before is a functional view of the architecture of the System Under
Test. On the other hand, the algorithm is a C/C++ based one which is embedded in the mid-
dleware ad-hoc system, ie RTMaps©. Here after, as an illustration, there is a screenshot of the
RTMaps diagram that embed the functional bloc described above.

110

[L2.9] Final POCs

Figure 103: Screenshot of the RTMaps diagram (.rtd)

3.2.2 Operational Design Domain

The first activity to effectively create a digital twin was to replicate the road network of the
geographical area where the system is evolving. To do so, we have taken a tile from the Open-
StreetMap open-source data. From this (.osm) file we have used a function that is provided by
the SUMO communité (netconvert) to transform it into OpenDRIVE 1.5 (.xodr). This .xodr
can then be taken as input from IPG CarMaker to be transformed in (.road5).

111

[L2.9] Final POCs

Figure 104: Globalview of the processflow to create road network

It is to be noted that even if this import method works well, it is still imperfectible because for
example, the number of lane is not consistent with reality, trafic sign is not taken into account.
To improve the road network, it is then advised to add manual work. Here is the final top-view
result of the IPG Road 5 file.

Figure 105: Topview of the roadnetwork imported from OpenStreetMap

112

[L2.9] Final POCs

3.2.3 Sensor Model

Let’s first remind the different typologies of sensor models that are used in the scope of
Automated Driving System Virtual Validation.

Figure 106: Global Typology of sensor models

In the first deployment of the Valeo PoC, the sensor model used in L1 Sensor Model .
Sensor Model L1 are functional sensor model where no physical properties intervene in the
detection. Therefore, the L1 sensor model will output track that will not include physical specfic
behavior (interference, reflexion, ray). As an example, for Object Detection, the L1 Sensor
model will output bounding-box that tracks nominally the geometry of the deteted object. For
Line Detection, the L1 Sensor Model will output waypoints (for e.g in x,y coordinates) of the
detected road marking.

3.2.4 Overview of the Intermediate Results

At this stage, we have developed the toolchain, functional based on a computer at Valeo
premises.

The running of a single test run is illustrated in the following scheme.

113

[L2.9] Final POCs

Figure 107: View of the co-simulation running on Valeo premises

On the left of the screeshot, we can find mainly all the monitoring scope of the testrun as for
example :

• an oscilloscope to monitor the acceleration request and SW request from the AD System

• an Expert Birdview to see the detected object in the surrounding of the EGO

• an 3D Birdview to have a better understanding of the size of each object etc

On the right, the view is focus on the IPG Movie which helps the monitoring engineer to see
the global environment (as it is) in a third person view.

3.3 Simulation platform enhancement

In continuation of the efforts deployed for POC Number 2, a second part of the activity in-
volved the creation of a Python script designed to automate the orchestration and parameter
selection processes. This development has been important for ensuring seamless synchroniza-
tion between RTMaps and IPG CarMaker. The script facilitates efficient management of the
interaction between these systems, enabling real-time data exchange and adjustments. This
automation not only enhances the reliability and efficiency of the simulations but also signifi-
cantly reduces the manual workload, paving the way for more advanced testing and validation
scenarios in autonomous vehicle development. Here are the main features of the co-simulation
(enhanced by the Python script orchestration) :

1. Test Run Creation:

• The script initiates the test run setup, defining and loading the test cases.

• Each test case is associated with a specific configuration and scenario, which in-
cludes the vehicle model and its sensor setups.

2. System Under Test Co-simulation with RTMaps:

• The script integrates the environment model with real-time motion information,
leveraging IPG CarMaker as the vehicle simulation model.

114

[L2.9] Final POCs

• It captures and transmits sensor data from GNSS, Object Detection (as environment
model), and other sensors to RTMaps, ensuring dynamic interaction during the sim-
ulation.

• The script also facilitates the synchronization of data between IPG CarMaker and
RTMaps, providing a cohesive simulation experience.

3. Test Report Generation:

• Post-simulation, the script processes the data to compute various KPIs.

• It then generates detailed test reports that include KPI calculations and their impli-
cations for the tested features.

• The reports are designed to assess the performance and accuracy of the system under
test against predefined benchmarks.

Figure 108: Global view of the Simulation Framework orchestration

3.3.1 Test run creation

The process of test run creation, as previously described in the report, requires a detailed un-
derstanding of the scene, which is achieved by interpreting pictograms and through the expertise
of using the Simulation Software IPG CarMaker. Designing the scene involves utilizing IPG
Road 5 to accurately create and position traffic elements within the simulation environment.
This initial setup is useful for ensuring that the subsequent simulations.

115

[L2.9] Final POCs

Figure 109: View of the IPG Road 5 Scenario Creation

Figure 110: Adding the traffic elements

As a concrete example to illustrate the capabilities of our simulation framework, we can
explore a Car-Bycicle Turning Accident (CBTA) scenario. This type of accidentology scenario

116

[L2.9] Final POCs

is critical for testing the interaction between vehicles and vulnerable road users (VRUs), such
as pedestrians.

In the CBTA simulation, a vehicle is set to make a turn at an intersection where a bycicle is
crossing. The scenario layout involves the vehicle (VUT for Vehicle Under Test). It has to be
noted that this test differ from the one in Euro NCAP as the system is a L4 system, therefore
the EGO-speed can not be imposed by the test because it’s the system itself that will determine
the speed profile according.

Figure 111: Adding the traffic elements

Figure 112: Rendering of the simulation on IPGMovie and RTMaps birview

3.3.2 Simulation orchestration

A Python library has been developed and is maintained to orchestrate and control simulations
within the CarMaker and RTMaps environments, as well as to automate parameter settings. This
setup utilizes socket messaging to facilitate remote control capabilities, allowing for dynamic
adjustments and real-time simulation feedback.

117

[L2.9] Final POCs

The architecture is designed as follows:

RTMaps Control: A dedicated Python module named ’carmaker control’ interfaces
directly with RTMaps via socket communication. This module sends commands and receives
responses, enabling the script to control simulation parameters and execution flow in RTMaps.

CarMaker Control: Similarly, the ’rtmaps control’ module manages interactions with
CarMaker through its own socket connection. This allows for adjustments to vehicle dynamics,
environmental settings, and other simulation variables in CarMaker.

These scripting, as a generic and interoperable methods tools, provide a framework for au-
tomating scenarios and testing protocols. By integrating Python scripting directly with these
tools, developers can create, modify, and run customized test scenarios efficiently. This ca-
pability is a step for validating autonomous driving algorithms under varied and controlled
conditions, thereby enhancing the development cycle of safety-critical automotive applications.
For the example of POC2 of PRISSMA, the goal here is to assess the ability of the Decision/

Figure 113: Architecture d’orchestration à travers les socktets

3.3.3 Parameter distribution

To showcase the flexibility and scalability of our toolchain, we will demonstrate its capabil-
ity for conducting parameter variations, specifically focusing on the dynamics of a cyclist in a
traffic simulation scenario.

The first set of parameter variations we will explore involves the velocity of the cyclist, de-
noted as vcyc, and their curvilinear distance from a critical interaction point, referred to as dist.

• Velocity of the Cyclist (vcyc): The speeds at which the cyclist will travel are set at various
increments to understand different interaction outcomes. The velocities are defined as
follows:

vcyc = {2, 5, 7, 10, 15, 20} km/h

118

[L2.9] Final POCs

• Curvilinear Distance (dist): This represents the path distance from the starting point of
the cyclist to the meeting point with the ego vehicle. The distances are set as:

dist = {8.5, 10.5, 12.5, 14.5, 16.5} meters

These parameters are illustrated in the diagram, where the curvilinear distance (’dist’) repre-
sents the path of the cyclist from their starting position to the meeting point — marked in green
on the diagram — at the moment the ego vehicle arrives at this point. Notably, a distance of
12.5 meters corresponds to a scenario where both the ego vehicle and the cyclist arrive simulta-
neously at the meeting point.

Figure 114: Vue schématique du paramètre ’dist’

This test setup allows us to simulate and analyze the interactions between the cyclist and the
ego vehicle under varying conditions. By adjusting the cyclist’s speed and the relative distance
to the meeting point, we can explore different interaction dynamics and outcomes. This setup
is crucial for developing and testing safety algorithms that can adapt to dynamic urban traf-
fic environments where bicycles and vehicles share close proximity. To thoroughly investigate

the interaction dynamics between the cyclist’s speed and curvilinear distance from the meet-
ing point, we implement a Full Factorial Design in our simulations. This approach involves
systematically varying each factor across all possible levels and observing the resultant effects
on the meeting dynamics. Given the defined levels for velocity vcyc and distance dist, the total

number of experimental scenarios can be calculated as the product of the number of levels for
each factor. Below, the table summarizes the results obtained from simulations involving differ-

ent VRU (Vulnerable Road User) speeds and starting distances, aimed at assessing the impact
of these parameters on the occurrence of collisions. This analysis highlights critical configura-
tions where interactions between vehicles and vulnerable road users can lead to incidents, thus
providing valuable insights into the safety of simulated traffic scenarios.

119

[L2.9] Final POCs

3.3.4 Conclusion and perspectives

In conclusion, PRISSMA project has been the project that allow us to successfully develop a
platform that seamlessly integrates Valeo’s L4 Autonomous Driving software with the simulated
environment of IPG CarMaker, thereby emulating complex driving scenarios. The integration
of the system under test was achieved through a interface with the RTMaps middleware, which
has proven instrumental in our testing procedures.

On-premises, we have been able to execute a variety of test runs using classical Design of Ex-
periments techniques, such as Full Factorial, to instantiate concrete test cases. This proof of
value have demonstrated that simulation data can be effectively used to functionally test deci-
sion and control systems within a function-agnostic environment.

Additionally, this project has helped us step into the world of digital twins, seeing them as
valuable assets per se. This led to the development of a 3D digital model of the Paris2Connect
area, as previously mentioned. This model provides a precise simulation environment that is
compatible with IPG CarMaker but not only. Therefore, when integrated inside the Simulation
Platform, the 3D Digital Environment has been a way to have a more representative model of
the real world, increasing then the realism of the simulation platform.

Looking forward, the inherent challenge remains our reliance on RTMaps, a tool primarily de-
signed for rapid prototyping that operates in real-time, thus limiting temporal scalability. The
future lies in devising a strategy to integrate the System Under Test (SUT) within a dedicated
environment that can operate faster than real-time, allowing for scalability in an infrastructure
not confined to on-premises limitations. This shift will enable more extensive and efficient test-
ing capabilities, propelling forward our abilities to innovate and validate enhance autonomous
driving technologies.

120

[L2.9] Final POCs

VRU Speed (km/h) Start Distance (m) No Collision

2 8.5 VRAI
2 10.5 VRAI
2 12.5 FAUX
2 14.5 FAUX
2 16.5 VRAI
5 8.5 VRAI
5 10.5 VRAI
5 12.5 VRAI
5 14.5 VRAI
5 16.5 VRAI
7 8.5 FAUX
7 10.5 VRAI
7 12.5 VRAI
7 14.5 VRAI
7 16.5 VRAI
10 8.5 FAUX
10 10.5 VRAI
10 12.5 VRAI
10 14.5 VRAI
10 16.5 VRAI
15 8.5 FAUX
15 10.5 VRAI
15 12.5 VRAI
15 14.5 VRAI
15 16.5 VRAI
20 8.5 FAUX
20 10.5 VRAI
20 12.5 VRAI
20 14.5 VRAI
20 16.5 VRAI

Table 16: Results of VRU speed and start distance impact on collision occurrence.

121

[L2.9] Final POCs

4 POC 3: Vehicle-In-The-Loop (VIL) real vs. simulation (UTAC, AVS)

4.1 Presentation & Overall Goals

With regards to demonstrating the use of tests in simulation for both certification and ho-
mologation of AI-based autonomous driving systems, AVSimulation and UTAC gathered to put
together a simulation software and a ADAS/AD system.

The AI-based ADAS/AD system to be included in the test loop for this POC will be openpilot
[14], which is a open-source level-2 ADAS developed by the company Comma.ai, currently
based in the San Diego, CA.

Initially, the goal is to demonstrate a real-time interface between SCANeR studio and the
AI-based AD/ADAS systems of our choosing. Synthetic data will be fed into the system and
the vehicle control signals (lateral and longitudinal) will be observed, analysed and put under
evaluation.

4.1.1 Operational Design Domain

According to the engineers in charge of openpilot, it is ”an Adaptive Cruise Control (ACC)
and Automated Lane Centering (ALC) system. Like other ACC and ALC systems, openpilot is
a failsafe passive system and it requires the driver to be alert and to pay attention at all times. In
order to enforce driver alertness, openpilot includes a driver monitoring feature that alerts the
driver when distracted.” [67].

The engineering team in charge of R&D affirms that openpilot is developed to be compliant
with FMVSS requirements and to follow industry standards for L2 ADAS systems. Functional
safety norms issued from the ISO26262 standard guidelines are observed, including those from
”Functional Safety Assessment of an Automated Lane Centering System” [68] released by the
National Highway Traffic Safety Administration (NHTSA).

Concerning the limitations of openpilot’s operational domain, many factors can impact the
performance of ALC and LDW capabilities, causing these systems to be unable do function as
intended. A non-exhaustive list of these is:

• Adverse weather conditions (fog, snow, rain etc.) causing poor visibility and interfering
with sensor operation.

• Cameras lens are obstructed by mud, snow, ice etc. or damaged.

• Steering torque is limited in sharp curves, like some intersections.

• Existence of restricted lanes or construction zones.

• Driving in presence of strong cross-wind.

• Bright light (due to direct sunlight into the camera sensor, oncoming headlights etc.)

Likewise, longitudinal control related ADAS included in openpilot, namely ACC and FCW,
may be impacted by many factors causing them to be unable to function as intended, thus
requiring the driver to pay close attention to the vehicle’s surrounding and be ready to take
control of both brake and gas pedals. The additional factors from the list above include, but are
not limited to:

• Approaching a toll booth, a bridge of a large metal plate.

122

[L2.9] Final POCs

• Driving in roads with VRU (Vulnerable Road Users).

• In the presence of stationary vehicles in the same lane.

Moreover, openpilot is designed to limit the amount of deceleration and acceleration that its
controller outputs to the car actuators, which may implicate in unsafe scenarios when abrupt
braking manoeuvres are required. Besides that, openpilot does not detect speed limits, and the
system may malfunction when the posted speed limit is below the speed set by driver.

Finally, regarding the Driver Monitoring System (DMS), openpilot may be unable to func-
tion as intended if (but not only) low light conditions exist (night drive, tunnels etc.), bright
light conditions exist, the driver’s face is partially outside the field-of-view of the driver-facing
camera or if this camera is obstructed. [69]

4.1.2 Tests in Simulation and Expected Results

Our POC is based on digital twin project, that is to say, one part of the project is virtually
realized in simulation in our case and the other part is physically realised with Vehicle-In-the-
Loop.

Firstly, we will talk about the different tests we will perform in simulation and what we
expect from this study.

Our AD system has several identifiable functions : ACC, ALC, FCW, and LDW. The main
objective is to evaluate each function performance individually to make sure our system is
reliable to be driven on real world/open roads.

For FCW function, we will use selected tests and scenarios from AEB VRU and C2C tests
protocol. We have selected 2 scenarios to evaluate system performance : one scenario with a
bicyclist as target (CBLA) and one scenario with pedestrian as target (CPLA).

Figure 115: Figure extracted from Euro NCAP AEB LSS VRU Test Protocol - v4.1

123

[L2.9] Final POCs

The Euro NCAP specification concerning the VRU FCW is when the FCW signal is triggered
before 1.7s Time-To-Collision (TTC). Then , we have to be sure the OpenPilot system fits this
requirement.

For LDW, Euro NCAP protocol gives some indication about the warning must award. We
talk about Distance To Line Edge (DTLE), it means the remaining lateral distance (perpendic-
ular to the Lane Edge) between the Lane Edge and most outer edge of the tyre. In order to get
all the points given for this function, the system needs to award the warning before DTLE ∧

-0.2m.

4.2 Perimeter Definition

4.2.1 Simulation Environment

The Figure 116 shows a AVSimulation’s software suite logical architecture, in which func-
tions are allocated to software components. Reading the schematics from left to right, a typical
user workflow can be found:

• Accessing data relevant to the test (a virtual model of the test terrain, vehicles, vulnerable
road users, static road elements, scenarios etc.).

• Configuring a simulation environment through the GUI (modules to run, desired fre-
quency etc.).

• Preparing a test by choosing a scenario to run and combining simulation elements (e.g.
the ones listed above).

• Preparing a list of tests to run, through the definition of variables of interest/parameters
and the generation of several combinations of them.

• Executing the simulation models.

• Recording data for further analysis.

The ”simulation execution” component here presented corresponds to one possible way of
exploiting the partner software simulation suite. It considers, for example, that any sensor model
employed in the simulation setup is the one intrinsically embedded to SCANeR studio. External
models can be interfaced, the guiding principles are found in the ”interfaces specifications”
section below.

124

[L2.9] Final POCs

Figure 116: Logical architecture of the simulation environment involving SCANeR studio in PRISSMA. Source:
[?].

Among the existing realistic virtual 3D environment in SCANeR studio, the Figure 117
shows a view the TEQMO test circuit, which replicates with fidelity the real terrain equivalent
geometry, road elements, physical properties of materials etc.

Figure 117: 3D modelling of the TEQMO terrain in SCANeR studio.

To provide a visual example of a simulation scenario taking place at this terrain, the Figure
118 shows a virtual pedestrian crossing scenario, on the TEQMO virtual environment.

125

[L2.9] Final POCs

Figure 118: View of a virtual pedestrian crossing scenario test.

One important aspect of the simulation environment is the sensors models, parameterized
based on their real counter-parts we want to model. Comma.ai sells the hardware on which
openpilot is embedded and can run optimally. The most recent version of their hardware is
called Comma 3 (Figure 119), on which three cameras are present. Two cameras are oriented
towards the exterior of the vehicle (main road camera with narrow field of view and wide angle
camera with 185° fish eye lenses), and the third one captures the cockpit, providing images to
the Driver Monitoring System.

Figure 119: Comma 3 device and its three cameras.

On SCANeR studio, we parameterized our camera model to synthesize images similar to
the ones the real camera sensor captures, taking into account the technical specifications of the
image sensor, lens etc. The Figure 120 shows the GUI provided by SCANeR studio to define
a sensor configuration on which the two road facing cameras are listed. For the moment, the
DMS will not be included in the test loop as we are not interested in simulating the cockpit
camera.

126

[L2.9] Final POCs

Figure 120: Screenshot of SCANeR studio GUI displaying the sensor configuration containing the camera models.

Figure 121: Sample of Comma Three Images.

Besides taking RGB images as input, openpilot also uses signal from the RADAR (when one
is mounted on the vehicle), the GPS receiver (Ublox) and IMU. Models of these components
shall also be part of the simulation environment.

4.2.2 Real-world Testing Conditions

UTAC, a leading group in the field of development and validation testing, automotive ho-
mologation and new technologies related to the autonomous, connected and electric vehicle.
UTAC has several test sites around the world : US, Finland, Marocco, UK and France. In 2018,
TEQMO test tracks were built in order to provide testing and validation services. It includes all
the roads we can meet on European and french infrastructure : highways, city and rural roads.
Related to PRISSMA use case, the city part will be used to realise test in real conditions.

127

[L2.9] Final POCs

In order to reproduce open-world conditions, UTAC has many types of targets : pedestrian,
bicyclist, motorcyclist and car. All of these vehicles can be impacted up to 80km/h.

Figure 122: TEQMO map showing the different test tracks

Figure 123: Euro NCAP targets used by UTAC

4.2.3 Choice of Artificial Intelligence Algorithm

The AI-based system to be included in the test loop for this POC will be openpilot [14],
which is a open-source level-2 ADAS system developed by the company Comma.ai. Openpilot
is based on a end-to-end machine learning approach, as the Figure 124 illustrates. The AI algo-
rithm takes as input raw sensor data and outputs a desired trajectory for the vehicle. Looking
at the simplified representation of the ML model, two main stages can be identified: vision and
policy. The first one, vision, is in charge of reading raw image data from cameras and condens-
ing this data into a lower-dimension, encoded variable. Also, it is based on the EfficientNet B2
convolutional neural network, introduced in [70]. The second stage of the NN architecture is in
charge of policy learning, i.e., outputting the desired driving path.

128

[L2.9] Final POCs

Figure 124: Simplified representation of openpilot end-to-end neural-network architecture.

The main advantage behind the end-to-end approach is that data collected while a human
is driving a car can be later used to improve the algorithm. In other words, human drivers
are basically annotating data, that are in the sequence logged and uploaded over-the-air into the
company database, from where data can be analyzed and used to further train the neural network
model. The Figure 125 draws a flow diagram of driving data, both online and offline. On the
other hand, by choosing an end-to-end system, access to intermediate properties is hampered,
for instance object localization and tracking.

Figure 125: Data flow diagram around openpilot. Source: [14]

.

The AI model inside openpilot is known as ”Supercombo” and it is responsible for per-
ception, planning, localization and control. On the preprocessing stage, consecutive RGB im-
ages are concatenated together to serve as model input. The main network is based on Google
Efficientnet-B2 [70] as the model backbone, connected to gated recurring unit (GRU) to capture
temporal information. Finally, the prediction head is composed of fully connected layers that
output a few possible trajectories, among which the one with the highest confidence is chosen
as the planned path. Besides that, Supercombo also predicts lane lines, road edges, the position
and velocity of leading objects.

129

[L2.9] Final POCs

4.2.4 Data to be Extracted

Chen et. al. presented in their paper [15] qualitative and quantitative results of a real-world
analysis of openpilot. The experiments show that the Automatic Cuise Control (ACC), Au-
tomatic Lane Centering (ALC) and Stop-and-Go ADAS behaved correctly in situations with
and without visible lines, on a straight road with heavy traffic, in cut-in/cut-out and breaking
scenarios. The same authors propose some metric to evaluate openpilot, such as the distance
to lane lines, the distance to the leading car and the speed of the leading car. Finally, a list of
typical failure cases is presented, including: conical barrels are not detected, other vehicles are
not detected at night, ego car speed is too fast for the road curvature, others vehicles cut-in too
closely.

Chen et. al. propose in their article [15] two kinds of metrics to evaluate the ADAS system:
the imitation and the comfort metrics. Imitation metrics aim at showing the ability of an AI
based model to learn from human drivers. These include: the average euclidean distance error
and the average precision, both calculated using the predicted trajectory and ground truth points,
i.e. the trajectory a human would take. The second kind of metrics correspond to comfort
metrics, that aim at quantifying a trajectory in terms of jerk and lateral acceleration to provide
insights on how comfortable the onboard passengers feel.

Figure 126: Data flow diagram around openpilot. Source: [15]

.

The authors of the same paper [15] present the results of some tests in a simulation envi-
ronment, whose main purpose (in their approach) is to verify whether the model is logically
correct or not. On the right side of the Figure 126, a BEV (Bird-Eye-View) visualisation of the
predicted trajectory of the model, given a curved road, which may also be used for computing
metrics (e.g. with respect to the expected trajectory an ideal driver would take).

4.2.5 Methods, Procedures and Protocols for Evaluation

To provide evidence on topics such as representativity of sensors models embedded in sim-
ulation, AVS has worked on other R&D collaborative projects, such as the 3SA Project [71].
Among many other activities, the modelling of camera sensors is of great interest in this project,
towards the goal of replicating in simulation the behaviour of a physical sensor, specially in
non-ideal conditions such as adverse weather.

130

[L2.9] Final POCs

The methodology developed within the project required collecting real data of driving sce-
narios on a test track and then re-projecting those scenarios on a camera bench. To do so, such
scenarios were reconstructed in simulation, both in terms of positioning of the main actors (ve-
hicles, pedestrians, relevant static elements of the scene) and sensor data. The figure 127 shows
vehicles used during the phase of data collection from physical tests.

Figure 127: Vehicles under test used to collect multi-sensors data during driving scenarios

The next step following the data collection on UTAC test tracks was to replay in simulation
such scenarios. The figure 128 corresponds to a snapshot of one of those scenarios, showing
a comparison between a synthetic image generated in simulation and its real counterpart. Ele-
ments such as the road markings, the shape of the target vehicle shadow and the roll angle of the
camera can be analyzed to determine representativity of the simulation in a qualitative manner.

Figure 128: Comparison between a synthetic image and its real counterpart.

The Figure 129 offers a quantitative indicator of the representativity of the replayed scenario
in simulation, in terms of the output of the smart-camera. The example shows the longitudinal
distance between the ego-car and its target vehicle. The black line corresponds to the value
estimated on the test track with the smart-camera embedded in the ego-car. The red line corre-
sponds to the value estimated by the smart-camera mounted in the camera bench when a real
video recording is replayed. Finally, the blue line corresponds to the value estimated by the

131

[L2.9] Final POCs

smart-camera mounted in the camera bench when the synthetic image is displayed in the pro-
jection screen. The agreement of the the 3 lines evidences the capability of the simulator to
replay the driving scenarios and produce synthetic images really similar to real ones.

Figure 129: Longitudinal distance between ego car and its target estimated by a smart-camera.

4.3 Implementation

4.3.1 Scenario Management (MOSAR)

It is planned at this stage of the project that instantiation of this POC will be addressed in
MOSAR in order to manage scenarios.

This section of the deliverable will be enriched in the following versions of this document in
order to present the progress regarding the concrete use of MOSAR to manage scenarios that
will be addressed by the POC.

At this point of the project iterations are planed to begin for this POC starting November
2022.

4.3.2 Scenario Management (Pack UTAC)

Since 2020, UTAC and AVSimulation has a strong relationship thanks to a partnership.
UTAC and AVSimulation propose scenarios pack as an Add-On in SCANeR studio. These
scenarios are directly executable in SCANeR studio and the content is based on NCAP proto-
cols from different areas and based on EU regulatories.

For the tests in simulation, we will use some scenarios from UTAC European Pack as we in
the the section 4.1.2.

4.3.3 Ongoing Development

The Figure 130 displays a view of the software solution we aim at building. Blue boxes rep-
resent sensors, whose generated data are fed into the ADAS/AD. The yellow box represents the
end-to-end neural network (ie Supercombo), which is the main AI component in the test loop.
The goal is to synthesize sensor data (camera, RADAR, IMU and GPS) in a similar manner to
reality and observe the control actions produced by openpilot, laterally and longitudinally. To
do so, a SCANeR module is under development, based on the SCANeR API (python).

132

[L2.9] Final POCs

Figure 130: openpilot autonomous driving software stack.

133

[L2.9] Final POCs

5 POC 4: Vehicle-In-The-Loop (VIL) real vs. simulation (TRANSPOLIS, INRIA)

5.1 Presentation & Overall Goals

In order to test and validate Inria perception software [72] embedded on the experimental
platform, shown in Figure 131, Inria and Transpolis propose to demonstrate a set of selected
scenarios, using a novel Augmented Reality (AR) method able to merge in real time virtual and
real sensor data [73]. By adopting this AR framework, simulated environments can be used
to enrich real experiments and generate more complex, critical, and otherwise dangerous test
scenarios.

Figure 131: Inria experimental platform: Renault Zoe car equipped with Velodyne HDL64, 4 Ibeo Lux LiDARs,
Xsens GPS and IMU and cameras.

5.1.1 Design Domain

This proof of concept proposes to demonstrate representative scenarios [74], which have
been proven to be at a high risk of collision, in an urban environment, at relatively low speed.
The benefit of the proposed method is the ability to safely generate near misses and actual
collisions at a Vehicle in the loop level, where the environment is a hybrid of the real test site,
and both simulated and real road actors, using the augmented reality framework.

5.1.2 Tests in Simulation and Expected Results

This POC proposes a hybrid method between virtual and real testing. It takes advantage of
simulation on the following points:

• Implement a set of scenarios for augmented reality tests. Scenarios are designed and
tested first in simulation using Zoé digital twin then executed with real-world Zoé on a
test track.

• Analyse each scenario with a set of metrics designed to evaluate occupancy grid-based
perception.

• Generate a ground truth for occupancy grids using the georeferenced digital twin of the
environment and the virtual actor data from the simulator.

134

[L2.9] Final POCs

Figure 132: Experimental Platform: digital twin

5.2 Perimeter Definition

5.2.1 Simulation Environment

Figure 133: Augmented Reality framework

The INRIA CHROMA group has developed a virtual twin of its Renault Zoe experimental
autonomous vehicle on the Gazebo simulator. This virtual twin generates the same outputs (sen-
sors messages, localization) that the actual vehicle does, reacts to the same commands, and has a
realistic kinematic and dynamic behavior. This allows to test software in Software-in-the-Loop
and Hardware-in-the-Loop. CHROMA has also developed an Augmented Reality framework
[73] for testing and validation of the perception software on the Renault Zoe experimental ve-
hicle. This framework provides a flexible way to introduce any virtual element in real time in
the data of the LiDAR sensors of the vehicle. Our Augmented Reality accurately handles all
possible occlusions between real and virtual elements. The representability of test scenes gen-
erated by the augmented reality framework has been experimentally proven. It is then possible
to easily and safely place the whole vehicle and all its software, spanning from perception to

135

[L2.9] Final POCs

control, in hybrid but realistic test scenes. This new testing methodology is intended to create a
new bridge between Vehicle-in-the-Loop and real-world testing.

5.2.2 Real-World Testing Conditions

As seen in figure 134, a geo-referenced test site digital twin has been created, so as to test in
simulation the validation scenarios, which were used in the augmented reality context, on the
real site.

This digital twin was also used for the generation of the perception ground truth. We used
Zoé localization and the digital twin geo-referencing to localize the real-world Zoé inside the
digital twin with the virtual actors of the scenario. The result is an approximated ground truth,
as accurate as the digital twin and the localization are.

Figure 134: Transpolis Fromentaux proving ground digital twin

5.2.3 Choice of Artificial Intelligence Algorithm

Figure 136: Inria CMCDOT framework

The CMCDOT framework [75] is a broad perception system, based on Bayesian filtering of
dynamic occupancy grids (CMCDOT), allowing parallel estimation of occupancy probabilities

136

[L2.9] Final POCs

Figure 135: Transpolis site

for each cell of a grid, inference of velocities, collision risk prediction and dynamic object
segmentation. From various heterogeneous sensor data, ground form is estimated, instantaneous
occupancy grids are generated and filtered using hybrid sampling methods (classic occupancy
grids for static parts, particle sets for parts dynamics), into a Bayesian unified programming
formalism. Based on this perception framework, navigation systems have been developed and
integrated, allowing path finding-and-following, dynamic obstacle avoidance, localization, and
thus the automation of various mobile robots. Communication tools are also included, allowing
data fusion from infrastructure systems. The software is composed of ROS packages, which
encapsulate the optimized core system on GPU Nvidia (Cuda), allowing real-time application
on embedded boards (Tegra X2). First developed in an automotive setting, it is now exploited
in other areas of mobile robotics, and is particularly suited to highly dynamic and uncertain
environment management. Thanks to an important engineering support over the years (notably
thanks to IRT Nanoelec), this software has grown to be a core research and development tool
of the team, an important technology demonstration and transfer vector, through maintained
experimental platforms (most notably automated Zoe) and associated research contracts and
software licensing with industrial partners.

5.2.4 Data to be Extracted

Table 17 lists the data that have been extracted for this POC and that are necessary for the
analysis of the results. The Zoé software is based on ROS (Robot Operating System), therefore
recorded data are composed of ROS messages and the recording is done using the tool ROSbag.
ROSbag records messages without differentiating between the simulation or real-world sensors
and Zoé. Simulation data are then used to generate the ground truth. More details on this subject
can also be found in PRISSMA deliverable 3.3.

137

[L2.9] Final POCs

Topic name Topic type Description
/zoe/velodyne points sensor msgs/PointCloud2 Point clouds of the Velodyne HDL-64 LiDAR
/zoe/lux right sensor msgs/PointCloud2

Point clouds of the front right, front center, front left and rear Ibeo Lux LiDARs
/zoe/lux center sensor msgs/PointCloud2
/zoe/lux left sensor msgs/PointCloud2
/zoe/lux rear sensor msgs/PointCloud2
/temp/zoe/velodyne packets velodyne msgs/VelodyneScan Raw data measurements from the Velodyne HDL-64
/zoe/classified cloud sensor msgs/PointCloud2 Merged point cloud from the 5 LiDARs with classification of ground
/zoe/us right sensor msgs/Range

Front ultrasonic range sensors/zoe/us center sensor msgs/Range
/zoe/us left sensor msgs/Range
/zoe/sp90 fix sensor msgs/NavSatFix

Satellite localization of the Zoé
/zoe/sp90 time reference sensor msgs/TimeReference
/zoe/fix sensor msgs/NavSatFix
/zoe/fix common gps common/GPSFix
/zoe/raw fix sensor msgs/NavSatFix
/zoe/camera front/image rect color sensor msgs/Image Images stream of the front camera
/zoe/camera front/camera info sensor msgs/CameraInfo Information about the camera and its calibration
/zoe/imu/mag sensor msgs/MagneticField Magnetic compass of the Zoé IMU
/zoe/imu/data sensor msgs/Imu IMU data (orientation, angular velocity and linear acceleration)
/navigation/dwa result dwa dynamic planner/Trajectory Current trajectory of the Zoé generated by the local planner
/navigation/planner result dwa dynamic planner/PlannerResult

Status information on the local planner
/navigation/planner status dwa dynamic planner/PlannerStatus
/zoe/velocity grid e motion perception msgs/VelocityGrid Grid of velocity vectors of the dynamic cells
/zoe/state grid e motion perception msgs/FloatOccupancyGrid Grid of filtered probability of occupied, dynamic, static and unknown
/zoe/occ grid e motion perception msgs/FloatOccupancyGrid Grid from one LiDAR point cloud of probabilities of occupied and unknown. Output of the LiDAR sensor model
/zoe/control/refs ros zoe msgs/ControlRefs Throttle, brake and steering commands sent to the hardware controller of the Zoé for automated driving
/tf tf2 msgs/TFMessage

Dynamic and static transforms of the frames of the Zoé
/tf static tf2 msgs/TFMessage
/zoe/velocity geometry msgs/TwistStamped

Velocity of the Zoé
/zoe/speed geometry msgs/TwistStamped
/zoe/pose geometry msgs/PoseWithCovarianceStamped Filtered Pose of the Zoé by a Kalman filter. Relative to a world fixed frame
/gazebo/set model state gazebo msgs/ModelState

States and status of the virtual Actors in Gazebo/gazebo/link states gazebo msgs/LinkStates
/gazebo/model states gazebo msgs/ModelStates
/gazebo scenario/rosparam std msgs/String JSON serialization of all ROS parameters of the Zoé
/gazebo scenario/scenario std msgs/String JSON serialization of the scenario description and parameters

Table 17: Topics recorded during the experiments using the tool ROSbag.

5.2.5 Methods, Procedures and Protocols for Evaluation

While conducting the experiments at Transpolis, we used the CMCDOT as perception mod-
ule and all its occupancy grids were recorded, along with the necessary data for constructing
the ground truth (obtained from the simulator). For each occupancy grid produced by the CM-
CDOT, we generated a corresponding ground truth. Subsequently, we used the metric recently
presented in [76] to evaluate the similarity between those grids. By performing this procedure
on a significant number of scenarios we can statistically evaluate the perception performance
within the scenario context (i.e. crossing of an intersection in an urban area). The adopted met-
ric is suitable for a validation process: it assesses the similarity by considering the behaviour
of the AV navigating through the grids, effectively evaluating how closely driving using the
perception grid aligns with driving using the ground truth.

AR replaces real actors of a scenario with virtual counterparts with the risk that these simu-
lated actors are less realistic. We propose to evaluate the similarity between scenarios executed
using augmented reality and real actors by evaluating the similarity of perception behavior.
Scenarios with real obstacles can be replayed with only virtual actors by using the real actors
localization from the ground-truth data, therefore, each scenario execution has its augmented
reality counterpart to be compared with. This way, the scenario executions are synchronized
enough to pair at each time step CMCODT occupancy grids from the scenario executions (an
occupancy with real actors and an occupancy grid with virtual actors). The grids similarity is
measured using the metric as CMCDOT validation. Occupancy grids from the real actors sce-
nario can be seen as ground truth for the inferences from the scenario with virtual actors. This
method evaluates the impact of using augmented reality on the validation process itself. The
results should be used to assess how augmented reality can be integrated into a more general
validation framework.

138

[L2.9] Final POCs

5.3 Implementation

5.3.1 Scenario Management

Scenario descriptions are stored in JSON files. As an example, Figure 137 shows the con-
figuration file of an overtaking scenario. From the first to the last line, it describes: the scenario
name, the reference frame used, actor names, actor models, actor initial poses, the ego vehicle
path, the waypoints that trigger the start and end of the scenario using a tracked frame, and the
actor trajectories. Other parameters such as weather conditions, traffic signs, and road markings
are not studied in this POC, therefore they are omitted in the scenario descriptions. Also, Zoé
ADS and the digital twins configurations are fixed for all the experiments and stored apart from
scenario descriptions. The execution of a scenario is done by a ROS node run on Zoé onboard
computer. It manages the life-cycle and controls the trajectories of the virtual actors of the sce-
nario (i.e. it spawns and deletes the actor models in the simulator and controls their position
and orientation to follow their trajectories)

5.3.2 Dataset generation and analysis

The experiments at Transpolis were concluded with the recording of 120 scenario executions.
20 executions were performed and recorded per scenario (scenarios 1 to 5 and scenario 5 with
pedestrian target) totaling 850GB of data and about 1 hour of driving.

Following the methodology described in PRISSMA deliverable 3.3, we generated a dataset
by extracting Zoé occupancy grids from the recordings and generating corresponding ground
truth for each grid. Using metrics for occupancy grid similarity evaluation, Zoé’s perception
performance was evaluated for each scenario by assessing the similarity of its perception to the
ground truth. More details and results on the quantitative and qualitative analyses of this POC
can be found in the PRISSMA deliverable 3.6.

139

[L2.9] Final POCs

1 {
2 "name": "overtaking",
3 "ref_frame": "map",
4 "actors": {
5 "zoe": ["zoe/urdf/zoe_gpu.urdf", -2.5, 0, 0.35, -1.5708],
6 "car1": ["hatchback_red_gps/model.sdf", 2.5, -85, 0, 1.5708

],
7 "car2": ["hatchback_blue_gps/model.sdf", 2.5, -75, 0, 1.570

8],
8 "bus1": ["bus_gps/model.sdf", -10, -40, 0, -1.5708],
9 "person1": ["person_walking_gps/model.sdf", -20, -20, 0, -1

.5708],
10 "person2": ["person_walking_gps/model.sdf", 20, -45, 0, 1.5

708],
11 "person3": ["person_walking_gps/model.sdf", 12.5, -35, 0, -

1.5708]
12 },
13 "path": [[-2.5, -5, 0.35, -1.5708], [-2.5, -70, 0.35, -1.5708

]],
14 "start_waypoint": [-2.5, -10, 0.35, 2, "zoe/base_link"],
15 "trajectories": {
16 "car1": [[2.5, -85, 0, 1.5708, 8.333],
17 [2.5, -70, 0, 1.5708, 13.888],
18 [-2.5, -55, 0, 1.5708, 13.888],
19 [-2.5, -40, 0, 1.5708, 13.888],
20 [2.5, -25, 0, 1.5708, 8.333],
21 [2.5, -10, 0, 1.5708, 0]],
22 "car2": [[2.5, -75, 0, 1.5708, 8.333],
23 [2.5, -25, 0, 1.5708, 0]],
24 "person1": [[-20, -20, 0, -1.5708, 2.777],
25 [-17.5, -40, 0, -1.5708, 2.777],
26 [-10, -60, 0, -1.5708, 0]],
27 "person2": [[20, -45, 0, 1.5708, 1.333],
28 [10, -25, 0, 3.1416, 0]],
29 "person3": [[12.5, -35, 0, -1.5708, 1.333],
30 [10, -52.5, 0, 3.1416, 0]]
31 },
32 "end_waypoint": [-2.5, -65, 0.35, 1, "zoe/base_link"]
33 }

Figure 137: JSON file describing an overtaking scenario

140

[L2.9] Final POCs

6 POC 5 : complementarities between PAVIN and simulation (CEREMA, LNE)

Testing on-board AI on vehicles requires carrying out tests. These tests can be carried out on
physical, semi-simulated or fully simulated test means. In particular, the objective of the testing
resources is now to be able to produce risky scenarios (vulnerable users, critical scenarios,
degraded weather conditions, etc.).

The objective of the POC 5 consists to approach the simulation of fog in a real controlled
environment and in a virtual environment. The system under test is a YOLO type perception
system for the detection and identification of pedestrians. More specifically, this POC will have
2 sub-tasks:

• Qualify the physical testing means (PAVIN Platform, Leia) (repeatability, uncertainty,
etc.)

• Compare the results obtained between the different types of test means (physical, semi-
simulated, fully simulated).

This POC is cross WPs:

• WP1 Concrete applications to define an SDG, requirements and covering validation plans

• WP2 In simulation

• WP3 In a controlled environment

The PAVIN platform was used as part of a POC between LNE and CEREMA to compare the
results of this platform with SIL or HIL simulation applications, and to see the complementari-
ties between simulation and bench testing.

Figure 138: Set of scenarios applied and generated in the POC 5 dedicated to the pedestrian detection with YOLO
(Source CEREMA and LNE).

141

[L2.9] Final POCs

Figure 139: Experimental framework implemented in POC 5 with PAVIN facilities and LEIA simulation platform
from LNE (Source CEREMA and LNE).

Figure 140: AI-based detection of pedestrian with with foggy conditions both in controlled environment and in
simulation with a Digital Model of the PAVIN test site (Source CEREMA and LNE).

This POC was carried out as part of WP3, but straddles the line between this work package
and WP2. You can find the detailed description of this POC in deliverable 3.3 and the results of
the POC in PRISSMA deliverable 3.6.

142

[L2.9] Final POCs

Figure 141: Panel of pedestrian used in POC 5 for the AI-based detection in adverse and degraded weather condi-
tions (foggy weather) (Source CEREMA and LNE).

143

[L2.9] Final POCs

7 Other systems in the simulation environment

7.1 IRT SYSTEMX

The main objective of this intermediate deliverable is to provide a view on the Proofs of
Concept defined in the project and the means through which the virtual platforms used to for
testing can be evaluated.

To this end, one essential brick is the process through which scenarios going to simulation
or resulting from simulation can be managed and this is the purpose of the overview given in
this sub-section for the MOSAR Scenario Manager.

Through the MOSAR methodology and via the MOSAR Scenario Manager, scenarios can
be described by the pertinent POC teams prior to simulation. This is, describing the scenarios at
a functional (i.e. situation description) and logical level (i.e. specification of testing ranges for
parameters). Conversely, after performing a simulation campaign and provided that feature ex-
traction is performed, results can be retrieved and structured into the same descriptive scenario
models already implemented in MOSAR so that statistics on the results can easily be performed
by, but not restricted to, the simulation team.

The advantage of structuring scenarios through such a management framework it is com-
patible with testing of heterogeneous nature (i.e. controlled environment, simulation or other)
making comparisons simpler and better structured.

For the purposes of task 2.5 in PRISSMA, the details on the scenario management method-
ology are documented in [77]. For this first intermediate deliverable only the main envisaged
approach is presented in this section as an overview. However, for the following iteration of the
deliverable, the goal is to present how for each Proof of Concept in the project scenarios can
be defined and managed through the MOSAR methodology and to illustrate how simulation
results could be retrieved in the MOSAR Scenario Manager platform to then provide the means
for evaluating simulation results.

In future versions of this deliverable each POC should explore the feasibility of the descrip-
tion of the specific scenarios in MOSAR depending on the progress made in their implementa-
tions.

7.2 CEREMA

The CEREMA’s PAVIN platform is part of the CEREMA infrastructure in Clermont-Ferrand
(France). It was developed to investigate the effect of adverse weather conditions on the per-
formances of transportation systems. It can produce artificial rain with different intensities and
two different types of fog, with small (radiation fog) or medium droplets (advection fog) [78].

Regarding the work carried out within task 2.3, the PAVIN platform could be used to create
artificial fog and rain for a classical road scene, with known targets such as a static vehicule,
traffic signs and a dummy model. Validated noise models for each type of sensor could thus be
developed within the PRISSMA project (WP2-WP3) by the enhancement of existing and used
models or by introducing new models if necessary.

A digital twin of the platform can be created with clear weather conditions by scanning or
imaging the platform using a LiDAR and/or a stereo camera. The task will consist in adding fog
and rain through numerical simulations with the information from the digital twin using noise
models. A review of the different noise models from the literature is presented in the ”State of
the Art” deliverable from the task 2.1.

144

[L2.9] Final POCs

Figure 142: The Cerema PAVIN BP platform (source: Cerema)

Figure 143: Fog producing in the Cerema PAVIN BP platform (source: Cerema)

The idea is to compare the results obtained with artificial rain and fog from the platform, and
the results obtained with the simulated rain and fog from the noise models. To do so, statistical
methods must be defined to validate the accuracy of the noise models. It can either be using
statistics on pixels characteristics or by using pedestrians detection models.

145

[L2.9] Final POCs

8 Final Considerations (ALL)

146

[L2.9] Final POCs

REFERENCES

[1] S. Hakuli and M. Krug, “Virtuelle integration,” in Handbuch Fahrerassistenzsysteme,
2015, pp. 128–138. [Online]. Available: https://doi.org/10.1007/978-3-658-05734-3 8.

[2] Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20 years: A survey,” arXiv preprint
arXiv:1905.05055, 2019.

[3] Y. Fang, X. Guo, K. Chen, Z. Zhou, and Q. Ye, “Accurate and automated detection of
surface knots on sawn timbers using yolo-v5 model.” BioResources, vol. 16, no. 3, 2021.

[4] ultralytics, “Yolov5,” https://github.com/ultralytics/yolov5/ Accessed May 18, 2020.

[5] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online and realtime tracking,”
in 2016 IEEE international conference on image processing (ICIP). IEEE, 2016, pp.
3464–3468.

[6] Z. Qin, H. Wang, and X. Li, “Ultra fast structure-aware deep lane detection,” in European
Conference on Computer Vision. Springer, 2020, pp. 276–291.

[7] H. Vanholder, “Efficient inference with tensorrt,” in GPU Technology Conference, vol. 1,
2016, p. 2.

[8] W. Xu, D. Gruyer, A. Duminil, and S. song Ieng, “Sivic-adversce: A framework for gener-
ating synthetic datasets for visualperception in adverse scenarios and automated driving.”
in Proceedings of the IEEE 14th InternationalConference on PatternRecognition Systems
(ICPRS-2024), 15-18 July, 2024 (London, UK), 2024.

[9] A. Godil, R. Bostelman, W. Shackleford, T. Hong, M. Shneier et al., “Performance
metrics for evaluating object and human detection and tracking systems,” No. NIST
Interagency/Internal Report (NISTIR), vol. 7972, 2014.

[10] P. Dendorfer, H. Rezatofighi, A. Milan, J. Shi, D. Cremers, I. Reid, S. Roth, K. Schindler,
and L. Leal-Taixé, “Mot20: A benchmark for multi object tracking in crowded scenes,”
arXiv preprint arXiv:2003.09003, 2020.

[11] J. Luiten, A. Osep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, and B. Leibe, “Hota: A
higher order metric for evaluating multi-object tracking,” International journal of computer
vision, vol. 129, no. 2, pp. 548–578, 2021.

[12] R. K. Satzoda and M. M. Trivedi, “On performance evaluation metrics for lane estimation,”
in 2014 22nd International Conference on Pattern Recognition. IEEE, 2014, pp. 2625–
2630.

[13] A. Duminil, S.-S. Ieng, and D. Gruyer, “Quantifying fidelity in synthetic image
datasets through a statistical exploration,” MDPI Sensors, special Issue “Feature
Papers in Intelligent Sensors 2024”, vol. 2024, April 2024. [Online]. Available:
https://www.mdpi.com/journal/sensors/special issues/MZXN6Z6H2E

[14] C. blog. (2021) How openpilot works in 2021. [Online]. Available: https:
//blog.comma.ai/openpilot-in-2021/

147

https://doi.org/10.1007/978-3-658-05734-3_8.
https://github.com/ultralytics/yolov5/
https://www.mdpi.com/journal/sensors/special_issues/MZXN6Z6H2E
https://blog.comma.ai/openpilot-in-2021/
https://blog.comma.ai/openpilot-in-2021/

[L2.9] Final POCs

[15] L. Chen, T. Tang, Z. Cai, Y. Li, P. Wu, H. Li, J. Shi, J. Yan, and Y. Qiao, “Level 2
autonomous driving on a single device: Diving into the devils of openpilot,” arXiv preprint
arXiv:2206.08176, 2022.

[16] PFA. (2020) Automated driving safety validation: proposals from the french eco-system.
[Online]. Available: https://www.ecologie.gouv.fr/sites/default/files/2020%2001%
2009%20-%20autonomous%20driving%20-%20safety%20validation%20-%20french%
20views%20-%20Vdef.pdf

[17] JORF. (2021, Juin) Décret n° 2021-873 du 29 juin 2021 portant application de
l’ordonnance n° 2021-443 du 14 avril 2021 relative au régime de responsabilité
pénale applicable en cas de circulation d’un véhicule à délégation de conduite et à
ses conditions d’utilisation. [Online]. Available: https://www.legifrance.gouv.fr/loda/id/
LEGIARTI000043734793/2021-07-02/

[18] M. Revilloud, D. Gruyer, and E. Pollard, “Generator of road marking textures and asso-
ciated ground truth. applied to the evaluation of road marking detection,” in IEEE ITSC
2012, Anchorage, AK, USA ; 16 Sep - 19 Sep 2012, 2012.

[19] N. Hiblot, D. Gruyer, J.-S. Barreiro, and B. Monnier, “Pro-sivic and roads, a software suite
for sensors simulation and virtual prototyping of adas,” in Driving Simulation Conference
(DSC 2010). Driving Simulation Association (DSA), 2010.

[20] J.-C. Kedzia, P. de Souza, and D. Gruyer, “Advanced radar sensors modeling for driv-
ing assistance systems testing,” in 2016 10th European Conference on Antennas and
Propagation (EuCAP). IEEE, 2016, pp. 1–2.

[21] S. Pechberti, D. Gruyer, and V. Vigneron, “Optimized simulation architecture for mul-
timodal radar modeling: Application to automotive driving assistance system,” in 16th
International IEEE Annual Conference on Intelligent Transportation Systems (IEEE ITSC
2013), Den Hague, Holland. IEEE, September 2013.

[22] M. Hadj-Bachir and P. de Souza, “Lidar sensor simulation in adverse weather condition
for driving assistance development,” 2019.

[23] M. Hadj-Bachir, P. de Souza, P. Nordqvist, and N. Roy, “Modelling of lidar sensor distur-
bances by solid airborne particles,” arXiv preprint arXiv:2105.04193, 2021.

[24] D. Gruyer, M. Grapinet, and P. Desouza, “Modeling and validation of a new generic virtual
optical sensor for adas prototyping,” in in IEEE Intelligent Vehicle symposium, 2012,
Alcalá de Henares, June 3-7, Spain, 2012.

[25] S. Demmel, G. Larue, D. Gruyer, and A. Rakatonirainy, “An ieee 802.11p empirical
performance model for cooperative systems applications,” in 16th International IEEE
Annual Conference on Intelligent Transportation Systems (IEEE ITSC 2013), Den Hague,
Holland. IEEE, September 2013.

[26] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer,
O. Pink, V. Pratt et al., “Towards fully autonomous driving: Systems and algorithms,” in
2011 IEEE intelligent vehicles symposium (IV). IEEE, 2011, pp. 163–168.

148

https://www.ecologie.gouv.fr/sites/default/files/2020%2001%2009%20-%20autonomous%20driving%20-%20safety%20validation%20-%20french%20views%20-%20Vdef.pdf
https://www.ecologie.gouv.fr/sites/default/files/2020%2001%2009%20-%20autonomous%20driving%20-%20safety%20validation%20-%20french%20views%20-%20Vdef.pdf
https://www.ecologie.gouv.fr/sites/default/files/2020%2001%2009%20-%20autonomous%20driving%20-%20safety%20validation%20-%20french%20views%20-%20Vdef.pdf
https://www.legifrance.gouv.fr/loda/id/LEGIARTI000043734793/2021-07-02/
https://www.legifrance.gouv.fr/loda/id/LEGIARTI000043734793/2021-07-02/

[L2.9] Final POCs

[27] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate
object detection and semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2014, pp. 580–587.

[28] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference on
computer vision, 2015, pp. 1440–1448.

[29] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detec-
tion with region proposal networks,” Advances in neural information processing systems,
vol. 28, 2015.

[30] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-
time object detection,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 779–788.

[31] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd:
Single shot multibox detector,” in European conference on computer vision. Springer,
2016, pp. 21–37.

[32] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 7263–7271.

[33] ——, “Yolov3: An incremental improvement,” arXiv preprint arXiv:1804.02767, 2018.

[34] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and accuracy
of object detection,” arXiv preprint arXiv:2004.10934, 2020.

[35] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking with a deep
association metric,” in 2017 IEEE international conference on image processing (ICIP).
IEEE, 2017, pp. 3645–3649.

[36] J. Illingworth and J. Kittler, “A survey of the hough transform,” Computer vision, graphics,
and image processing, vol. 44, no. 1, pp. 87–116, 1988.

[37] A. Borkar, M. Hayes, and M. T. Smith, “Robust lane detection and tracking with ransac
and kalman filter,” in 2009 16th IEEE International Conference on Image Processing
(ICIP). IEEE, 2009, pp. 3261–3264.

[38] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, and T. Darrell,
“Bdd100k: A diverse driving dataset for heterogeneous multitask learning,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

[39] D. Wu, M.-W. Liao, W.-T. Zhang, X.-G. Wang, X. Bai, W.-Q. Cheng, and W.-Y. Liu,
“Yolop: You only look once for panoptic driving perception,” Machine Intelligence
Research, pp. 1–13, 2022.

[40] J. Pang, L. Qiu, X. Li, H. Chen, Q. Li, T. Darrell, and F. Yu, “Quasi-dense similarity
learning for multiple object tracking,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2021, pp. 164–173.

149

[L2.9] Final POCs

[41] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking performance: the
clear mot metrics,” EURASIP Journal on Image and Video Processing, vol. 2008, pp.
1–10, 2008.

[42] W. Xu, D. Gruyer, and S.-S. Ieng, “Generic simulation framework for evaluation process:
Applied to ai-powered visual perception system in autonomous driving,” in 2023 IEEE
26th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2023,
pp. 5641–5648.

[43] C. N. Valdebenito Maturana, A. L. Sandoval Orozco, and L. J. Garcı́a Villalba, “Explo-
ration of metrics and datasets to assess the fidelity of images generated by generative
adversarial networks,” Applied Sciences, vol. 13, no. 19, p. 10637, 2023.

[44] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation
using cycle-consistent adversarial networks,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2223–2232.

[45] V. Y. Mariano, J. Min, J.-H. Park, R. Kasturi, D. Mihalcik, H. Li, D. Doermann, and
T. Drayer, “Performance evaluation of object detection algorithms,” in 2002 International
Conference on Pattern Recognition, vol. 3. IEEE, 2002, pp. 965–969.

[46] J. C. Nascimento and J. S. Marques, “Performance evaluation of object detection algo-
rithms for video surveillance,” IEEE Transactions on Multimedia, vol. 8, no. 4, pp. 761–
774, 2006.

[47] R. Padilla, S. L. Netto, and E. A. Da Silva, “A survey on performance metrics for object-
detection algorithms,” in 2020 international conference on systems, signals and image
processing (IWSSIP). IEEE, 2020, pp. 237–242.

[48] P. Dendorfer, A. Osep, A. Milan, K. Schindler, D. Cremers, I. Reid, S. Roth, and
L. Leal-Taixé, “Motchallenge: A benchmark for single-camera multiple target tracking,”
International Journal of Computer Vision, vol. 129, no. 4, pp. 845–881, 2021.

[49] T. Sato and Q. A. Chen, “Towards driving-oriented metric for lane detection models,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 17 153–17 162.

[50] A. Duminil, S.-S. Ieng, and D. Gruyer, “Assessing fidelity in synthetic datasets: A multi-
criteria combination methodology,” in 27th Internation Conference on Information Fusion
2024, 7th-11th July 2024, Venice, Italie, July 2024.

[51] L. Nataraj, T. M. Mohammed, S. Chandrasekaran, A. Flenner, J. H. Bappy, A. K. Roy-
Chowdhury, and B. Manjunath, “Detecting gan generated fake images using co-occurrence
matrices,” arXiv preprint arXiv:1903.06836, 2019.

[52] M. Barni, K. Kallas, E. Nowroozi, and B. Tondi, “Cnn detection of gan-generated face im-
ages based on cross-band co-occurrences analysis,” in 2020 IEEE international workshop
on information forensics and security (WIFS). IEEE, 2020, pp. 1–6.

[53] I. Lelekas, N. Tomen, S. L. Pintea, and J. C. van Gemert, “Top-down networks: A coarse-
to-fine reimagination of cnns,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, 2020, pp. 752–753.

150

[L2.9] Final POCs

[54] S. R. Richter, H. A. AlHaija, and V. Koltun, “Enhancing photorealism enhancement,”
arXiv:2105.04619, 2021.

[55] D. Gruyer, S. Pechberti, and S. Glaser, “Development of full speed range acc with sivic,
a virtual platform for adas prototyping, test and evaluation,” in 2013 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2013, pp. 100–105.

[56] D. Gruyer, M. Grapinet, and P. De Souza, “Modeling and validation of a new generic
virtual optical sensor for adas prototyping,” in 2012 IEEE Intelligent Vehicles Symposium.
IEEE, 2012, pp. 969–974.

[57] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint
arXiv:1411.1784, 2014.

[58] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional
adversarial networks,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 1125–1134.

[59] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, “Virtual worlds as proxy for multi-object
tracking analysis,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 4340–4349.

[60] B. Li, W. Ren, D. Fu, D. Tao, D. Feng, W. Zeng, and Z. Wang, “Benchmarking single-
image dehazing and beyond,” IEEE Transactions on Image Processing, vol. 28, no. 1, pp.
492–505, 2019.

[61] G. Jocher, “YOLOv5 by Ultralytics,” May 2020. [Online]. Available: https:
//github.com/ultralytics/yolov5

[62] G. Jocher, A. Chaurasia, and J. Qiu, “YOLO by Ultralytics,” Jan. 2023. [Online].
Available: https://github.com/ultralytics/ultralytics

[63] W. Xu, R. Sainct, D. Gruyer, and O. Orfila, “Safe vehicle trajectory planning in an
autonomous decision support framework for emergency situations.” Applied Sciences
journal, vol. 11, pp. 1–31, July 2021, special Issue “Human-Computer Interaction: Theory
and Practice”.

[64] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick, “Microsoft coco: Common objects in context,” in Computer Vision–ECCV 2014:
13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part
V 13. Springer, 2014, pp. 740–755.

[65] B. Vanholme, D. Gruyer, B. Lusetti, S. Glaser, and S. Mammar, “Highly automated driv-
ing on highways based on legal safety,” IEEE Transaction on Intelligent Transportation
System, vol. 14, pp. 333–347, March 2013.

[66] D. Gruyer, I. Ben Jemma, S. Glaser, P. Desouza, J.-S. Barreiro, and S. Laverdure, “Simu-
lation platform for the prototyping, testing, and validation of cooperative intelligent trans-
portation systems.” in 23rd IEEE ITS World Congress, Melbourne, Australia. IEEE,
October 2016.

151

https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/ultralytics

[L2.9] Final POCs

[67] C. technical documentation. (2022) Comma.ai openpilot safety. [Online]. Available:
https://github.com/commaai/openpilot/blob/master/docs/SAFETY.md

[68] C. Becker, L. Yount, S. Rozen-Levy, J. Brewer et al., “Functional safety assessment of an
automated lane centering system,” United States. Department of Transportation. National
Highway Traffic Safety . . . , Tech. Rep., 2018.

[69] C. technical documentation. (2022) Comma.ai openpilot limitations. [Online]. Available:
https://github.com/commaai/openpilot/blob/master/docs/LIMITATIONS.md

[70] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural net-
works,” in International conference on machine learning. PMLR, 2019, pp. 6105–6114.

[71] S. P. Partners. (2022) 3sa – simulation pour la sécurité des systèmes du véhicule
autonome. [Online]. Available: https://www.irt-systemx.fr/projets/3sa/

[72] L. Rummelhard, J. Lussereau, J.-A. David, C. Laugier,
S. Dominguez, G. Garcia, and P. Martinet, “Perception and
Automation for Intelligent Mobility in Dynamic Environments,”
in ICRA 2017 Workshop on Robotics and Vehicular Technologies for Self-driving cars,
Singapore, Singapore, Jun. 2017. [Online]. Available: https://hal.inria.fr/hal-01592566

[73] T. Genevois, J.-B. Horel, A. Renzaglia, and C. Laugier, “Augmented Reality on
LiDAR data: Going beyond Vehicle-in-the-Loop for Automotive Software Validation,”
in IV 2022 - 33rd IEEE Intelligent Vehicles Symposium IV. Aachen, Germany: IEEE,
Jun. 2022, pp. 1–6. [Online]. Available: https://hal.inria.fr/hal-03703227

[74] J.-B. Horel, C. Laugier, L. Marsso, R. Mateescu, L. Muller,
A. Paigwar, A. Renzaglia, and W. Serwe, “Using Formal Con-
formance Testing to Generate Scenarios for Autonomous Vehicles,” in
DATE/ASD 2022 - Design, Automation and Test in Europe - Autonomous Systems Design.
Antwerp, Belgium: IEEE, Mar. 2022. [Online]. Available:
https://hal.inria.fr/hal-03516799

[75] L. Rummelhard, A. Nègre, and C. Laugier, “Conditional Monte Carlo Dense Occupancy
Tracker,” in 18th IEEE International Conference on Intelligent Transportation Systems,
Las Palmas, Spain, Sep. 2015. [Online]. Available: https://hal.inria.fr/hal-01205298

[76] J.-B. Horel, R. Baruffa, L. Rummelhard, A. Renzaglia, and C. Laugier, “A navigation-
based evaluation metric for probabilistic occupancy grids: Pathfinding cost mean squared
error,” in 2023 IEEE 26th International Conference on Intelligent Transportation Systems
(ITSC), 2023, pp. 3148–3153.

[77] Q. et al, “Definition of procedures of scenario management and results analysis – initial
report,” PRISSMA Deliverable, Tech. Rep., 2022.

[78] P. Duthon, M. Colomb, and F. Bernardin, “Fog classification by their droplet size
distributions: Application to the characterization of cerema’s platform,” Atmosphere,
vol. 11, no. 6, 2020. [Online]. Available: https://www.mdpi.com/2073-4433/11/6/596

152

https://github.com/commaai/openpilot/blob/master/docs/SAFETY.md
https://github.com/commaai/openpilot/blob/master/docs/LIMITATIONS.md
https://www.irt-systemx.fr/projets/3sa/
https://hal.inria.fr/hal-01592566
https://hal.inria.fr/hal-03703227
https://hal.inria.fr/hal-03516799
https://hal.inria.fr/hal-01205298
https://www.mdpi.com/2073-4433/11/6/596

	Introduction (ALL)
	POC 1: Bus Station Automated Service (BuSAS) on real-life track and simulation (UGE, SPHEREA)
	Presentation
	Overall Goals
	Design Domain
	Tests in Simulation and Expected Results

	Perimeter Definition
	Simulation Environment and generic methodology
	Real-World Testing Conditions
	Choice of Artificial Intelligence Algorithm

	 Proposal of a generic multi-modal framework
	General framework for scenario management
	General framework for DataSets and Ground Truth generation
	General framework and methodology for Digital Models generation
	Generic and interoperable simulation framework
	Simulation platforms derived from the generic framework

	 Methods, procedures, and protocols for evaluation and validation
	Evaluation of Object Detection
	Evaluation of Multi-Objects Tracking
	Evaluation of Lane Detection
	Verification and validation of sensor models
	Method of evaluation of the fidelity of synthetic data: correlation between physical test and simulation

	Final Implementation
	Implementation basis
	Environment and System Modelling
	Scenarios Management
	 Digital Models developed in the framework of PRISSMA or associated projects
	Adverse Features and simulation under complex scenarios
	Datasets Collection and Annotation

	BuSAS DataSets generation and analysis
	DataSet generation
	DataSet extension
	Evaluation and validation results

	Discussion and Recommendations for future developments and improvements
	Future Developments on ImPACT 3D
	CARLA and U-Test

	POC 2: Valeo Urban Driving (VALEO)
	Presentation
	Perimeter Definition
	Description of the System Under Test
	Operational Design Domain
	Sensor Model
	Overview of the Intermediate Results

	Simulation platform enhancement
	Test run creation
	Simulation orchestration
	Parameter distribution
	Conclusion and perspectives

	POC 3: Vehicle-In-The-Loop (VIL) real vs. simulation (UTAC, AVS)
	Presentation & Overall Goals
	Operational Design Domain
	Tests in Simulation and Expected Results

	Perimeter Definition
	Simulation Environment
	Real-world Testing Conditions
	Choice of Artificial Intelligence Algorithm
	Data to be Extracted
	Methods, Procedures and Protocols for Evaluation

	Implementation
	Scenario Management (MOSAR)
	Scenario Management (Pack UTAC)
	Ongoing Development

	POC 4: Vehicle-In-The-Loop (VIL) real vs. simulation (TRANSPOLIS, INRIA)
	Presentation & Overall Goals
	Design Domain
	Tests in Simulation and Expected Results

	Perimeter Definition
	Simulation Environment
	Real-World Testing Conditions
	Choice of Artificial Intelligence Algorithm
	Data to be Extracted
	Methods, Procedures and Protocols for Evaluation

	Implementation
	Scenario Management
	Dataset generation and analysis

	POC 5 : complementarities between PAVIN and simulation (CEREMA, LNE)
	Other systems in the simulation environment
	IRT SYSTEMX
	CEREMA

	Final Considerations (ALL)

