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04/2021 - 04/2024

[L1.5] TESTS AND AUDIT REQUIREMENTS - FINAL REPORT
EXIGENCES D’ESSAIS ET D’AUDITS
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Abstract. This deliverable aims to provide a set of recommendations and requirements for
testing and auditing an autonomous mobility system in relation to the specificities of AI. Based
on the ecosystem and ODDs elements from the WP8 information, evaluation and audit pro-
tocols will have to be developed, covering the creation of metrics as well as the implemen-
tation of coverage plans and the definition of AI-based system test facilities (constraints and
costs). Particular attention will be paid to the definition of test scenarios. The recommendations
should cover several critical aspects for the evaluation of AI such as performance, robustness,
resilience, traceability, interpretability and explainability of responses, or testability of AI-based
functions. The outputs of this task will feed into work packages 2, 3, 4, 5 and 6 of the project.

Résumé. Ce livrable a pour vocation de fournir un ensemble de recommandations et d’exigences
d’essais et d’audits pour un système de mobilité autonome en relation avec les spécificités de
l’IA. En se basant sur des éléments de l’écosystème et des ODDs issus des informations du
WP8, des protocoles d’évaluation et d’audits devront être développés, recouvrant la création
de métriques ainsi qu’une mise en œuvre des plans de couvertures et de définition des moyens
de test des systèmes à base d’IA (contraintes et coûts). Une attention particulière sera ac-
cordée à la définition des scénarios de test. Les recommandations devront couvrir plusieurs
aspects critiques pour l’évaluation de l’IA comme la performance, la robustesse, la résilience,
la traçabilité, l’interprétabilité et l’explicabilité des réponses, ou la testabilité des fonctions à
base d’IA. Les sorties de cette tâche viendront alimenter les WP 2, 3, 4, 5 et 6 du projet.
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1 Introduction : purpose of the document

Artificial intelligence (AI) has seen major developments in recent years in many profes-
sional sectors and especially for the autonomous mobility systems. The levels of performance,
robustness, ethics and explainability achieved by the various AI solutions have yet to be reliably
demonstrated. End-users will thus have the guarantees that condition the acceptability of these
technologies. They will be able to choose among different existing solutions thanks to objec-
tive and unambiguous common references, metrics and evaluation methodologies. The audit
certification and evaluation protocol for a homologation process are intended to accompany this
profound transformation of society by providing confidence in AI systems, in order to secure
their use and promote their deployment.

This document is an update of deliverable 1.4 following feedback from the first POC phase
of the PRISSMA project. The purpose of this document is to provide a set of recommendations
and requirements for tests and audits for an autonomous mobility system in relation to the speci-
ficities of AI, taking into account the possible cooperative nature of its operating environment
(augmented infrastructure with perception and classification capabilities, supervision, commu-
nication with the road infrastructure, vehicle-to-vehicle, etc.). In particular, a major phase of
updating requirements has been carried out. These requirements may be defined directly from
the regulations, the specific needs of the AI, in accordance with the automotive ecosystem or
linked to the needs of other work packages and they may be described in an unambiguous and
complete manner so that future users of the homologation are fully aware of the benefits and
limitations of the functionality developed.

As in the previous deliverable, the first task will be to choose the different AI jobs that could
lead to an approval process (understanding of the environment through classification algorithms
for example, etc.). Then, for each of these jobs and based on the elements of the ecosystem and
the ODDs resulting from the information provided in WP8, evaluation and auditing protocols
will have to be developed, covering the creation of metrics as well as the implementation of
coverage plans and the definition of means of testing AI-based systems (constraints and costs).
Particular attention will be paid to the definition of test scenarios, in particular through the
generation of scenarios integrating the criteria linked to risk analysis (occurrence, etc.). These
recommendations should cover several critical aspects for the evaluation of AI such as per-
formance, robustness, resilience, traceability, interpretability and explicability of responses, or
testability of AI-based functions for both the design and certification phases. The outputs of
this task will feed into work packages 2, 3, 4 and 6 of the project.

2 Missions and tasks assessed

2.1 Context

To achieve the goal of this document, the project shall determine the boundaries of its ho-
mologation related to the use of AI for autonomous mobility, considering the different levels
of integration of smart technologies (from the smart sensor embedded on the mobile platform
to the system of systems incorporating the infrastructure) in order to define and document its
scope and the applicability of the requirements of audit and evaluation protocols.

The homologation perimeter must specify the evaluation activities covered, the mission and
the AI subsystems of the autonomous mobility system on test, but also the distribution between
the different types of verification (audit, open road test, controlled environment test and simu-
lation) and provide a justification for any exclusion of applicability of the requirements of the
future homologation.

1
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Although the global task 1.2 is supposed to give generic recommendations for all the tasks
that can be incorporated in an autonomous mobility system that will be covered by this second
iteration of this deliverable and so this document will not stop at the more restricted perimeter
of the autonomous shuttle and will try to broaden the subject to include all potential Level 4
vehicles.

2.2 Chosen mission

In the deliverable 1.4, the first use case of the autonomous shuttle, the system tested covers
in principle the following area of operation:

• Urban

• Narrowing / narrow roads

• Ego speed range up to 50 (70) kph, in practice this could be less in POCS especially on
open road (20 kph for example)

• Fluid and congested traffic conditions

• Roadway edges & markings : all possible in urban

• Signage : all traffic signs/road markings/traffic lights in urban

• Objects : all mobile objects in urban (non-classified/classified)

• Large/small static objects

• All weather (eg light/intense rain) & light (day/night) conditions

For this case study, we had to be able to cover the various levels of system decomposition
considered:

• Autonomous vehicle system of systems whose aim is to enable the safety of road users
(signalling, safety barriers), reduce traffic jams and allow the passage of emergency vehi-
cles;

• Autonomous mobility system;

• Supervision system;

• Autonomous mobility system components especially captors.

The missions and the ODD of such a shuttle can be based on the ADS Tactical and Opera-
tional Maneuvers listed by the NHTSA. For example, an ODD and an OEDR have been defined
(by the WP2, WP4 and WP8) in the framework of the Paris2Connect POC and can be used as
an example for the outlines of the missions given to the AI but the deliverable must be more
generic than its various instantiations of the POCS.

All the tasks listed in the Tactical and Operational Maneuver column of the table 1 were
addressed by the first deliverable 1.4, it is up to each POC to limit itself with regard to what the
technical solution can do, the route and the means of testing as illustrated on this page for the
Paris2Connect case.

Each PoC of the first phase have listed the functional requirements related to the system
under study (maximum speed, maximum deceleration, etc.) to finish the listing of the missions
of the system under study.

For the update of deliverable 1.5, we will have to at least cover the case of the autonomous
shuttle previously covered, but we must be able to cover the new applications of the second

2
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Figure 1: OEDR for the Paris2Connect POC
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Technical and Operational Maneuver Covered remarks
Parking Out of ODD
Maintain Speed Yes
Car following Yes
Lane centering Yes
Lane switching/overtaking Limited limited lane switching on track.

Overtaking not in PoC scope
Enhancing Conspicuity Yes
Obstacle Avoidance Yes
Low-Speed Merge Out of ODD No merge ramps in test track
High-Speed Merge Out of ODD No merge ramps in test track
Navigate On/Off Ramps Out of ODD No merge ramps in test track
Right-of-Way decisions Yes Limited number of right-of-way on track
Navigate Roundabouts Out of ODD No roundabout in test track
Navigate Intersection Yes
Navigate Crosswalk Yes
Navigate Working Zone Out of ODD
N-Point Turn Out of ODD
U-Turn Out of ODD No U-Turn in test track
Route planning Limited limited to Test track Route Planning

Table 1: ODD for the Paris2Connect POC

phase of the POC, such as the autonomous droid (we would move from a predefined route to a
predefined area of use, for example, introducing greater variability), and in absolute terms try
to be generalizable to all possible level 4 autonomy applications at least for our requirements.

3 AI requirements/criteria and missions

Appendix B contains the full document setting out the requirements specifically adopted by
the PRISSMA project.

3.1 Regulatory

As explained earlier in this document, PRISSMA focuses on the evaluation and validation
process of road automated transport systems including functions based on AI. These transport
systems are to be treated as systems of systems and the vehicle is one of the systems to be
evaluated and approved. In the field of L4 automated vehicle type-approval, 2 regulations can
be analysed in this report:

• The European Regulation for Automated Driving systems type-approval, also called UE
ADS (2022-1426) [1]

• The French project of regulation for the Automated urban shuttle type-approval (NAVUR-
BAUT) [2]

Moreover, the French legal framework for the safety validation and legal authorisations of the
operation of road automated transport system is presented in the section.

The description of each of those regulations is not exhaustive. To get all the information and
requirements, it is necessary to browse the documents.

4
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3.1.1 EU ADS 2022-1426 [1]

The European commission has published in august 2022 a regulation defining the type-
approval procedures and technical specifications for Automated driving system (ADS) of fully
automated vehicles. The scope of this regulation is defined in Article 1. This Regulation ap-
plies to the type-approval of fully automated vehicles of category M1 and N2, with regard to
their automated driving system, for the following use cases:

(a) Fully automated vehicles, including dual mode vehicles, designed and constructed for the
carriage of passengers or carriage of goods on a predefined area in an urban or suburban
environment.

(b) ‘Hub-to-hub’: fully automated vehicles, including dual mode vehicles, designed and con-
structed for the carriage of passengers or carriage of goods on a predefined route with
fixed start and end points of a journey/trip and which may include urban or suburban or
motorway environment.

(c) ‘Automated valet parking’: dual mode vehicles with a fully automated driving mode for
parking applications within predefined parking facilities. The system may use or not
external infrastructure (e.g. localisation markers, perception sensors, etc.) of the parking
facility to perform the dynamic driving task.

It means that this regulation will be used for type approval of automated shuttles operating with
a level 4 of automation. All the technical information, that are relevant for PRISSMA project are
presented in the Annexes of this regulation. In Annex II of the EU ADS 2022-1426 regulation,
the regulation specifies the ADS performance requirements. These requirements are listed in
12 paragraphs:

1. Dynamic Driving Task (DDT) under nominal traffic scenarios

2. DDT under critical traffic scenarios (emergency operation).

3. DDT at ODD boundaries

4. DDT under failure scenarios

5. Minimal risk manoeuvre (MRM) and Minimal risk Condition (MRC)

6. Human machine interaction for vehicles transporting vehicle occupants

7. Functional and operational safety

8. Cyber security and software updates

9. ADS data requirements and specific data elements for event data recorder for fully auto-
mated vehicles

10. Manual driving mode

11. Operating manual

12. Provisions for periodic roadworthiness tests

1Vehicles having at least four wheels and used for the carriage of passengers
2Power-driven vehicles having at least four wheels and used for the carriage of goods

5
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All the requirements specified shall be taken into account in PRISSMA work as they can be
linked to an AI functionality. It is important to note that none of these requirements refers to a
possible AI component in the ADS.

Annex III of the EU ADS 2022-1426 regulation presents the compliance assessment. The
overall compliance assessment of the ADS is based on:

• Part 1: The consideration of the most relevant scenarios for the ODD

• Part 2: The assessment of the ADS design concept and the audit of the manufacturer
safety management system

• Part 3: The tests of the most relevant traffic scenarios

• Part 4: The credibility assessment for using virtual toolchain to validate ADS

• Part 5: The in-service reporting to demonstrate the safety performance in the field

Any requirement in Annex II (of the EU ADS 2022-1426 regulation) may be checked by means
of tests performed by the type-approval authority (or its technical service).

3.1.1.1 Part 1: The consideration of the most relevant scenarios for the ODD

A first set of basic functional scenarios is presented and safety requirements for each scenario
are presented. The basic scenarios are:

• Lane change manoeuvre

• Turning and crossing scenario

• Emergency manoeuvre scenarios

• Motorway entry

• Motorway exit

• Passing a toll station

• Operation on other road types than motorways

• Parameters to be used for Automated valet parking

Then, principles to derive scenarios from the ODD analysis are presented in the appendix
1 of part 1 of Annex III (of the EU ADS 2022-1426 regulation). These principles are further
investigated in the section 4.2.

3.1.1.2 Part 2: The assessment of the ADS design concept and the audit of the manufac-
turer safety management system

This part of the regulation presents the documentation and the information that the manu-
facturer have to present to the type-approval authority or its delegated technical service. The
type-approval authority or the technical service shall verify through audit targeted spot checks
and tests all the safety management and concepts presented by the manufacturer.

The type-approval authority shall assess the documentation package which shall show that
the ADS:

6
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(a) is designed and was developed to operate in such a way that it is free from unreasonable
risks for a vehicle occupants and other road users within the declared ODD and bound-
aries;

(b) fulfils the performance requirements of Annex II of this Regulation;

(c) was developed according to the development process/method declared by the manufac-
turer.

If the ADS contains any embedded AI algorithm, its functioning, implementation principles
and all its safety management and verification shall be included in the documentation that will
be audited. For example, paragraph 3.5.2 of the EU ADS 2022-1426, the regulation states :
”In respect of software employed in the ADS, the outline architecture shall be explained and
the design methods and tools used shall be identified. The manufacturer shall show evidence
of the means by which they determined the realisation of the ADS logic, during the design and
development process.”

The requirements and information included in this part of the regulation shall be taken into
account by PRISSMA WP6.

Moreover, taking into account the results of the analysis of the manufacturer’s documentation
package, the type-approval authority shall request the tests to be performed or witnessed by the
Technical Service to check specific points arising from the assessment.

3.1.1.3 Part 3: The tests of the most relevant traffic scenarios

The test program is defined by the type approval authority to cover parameter variations
inside the system boundaries and its ODD as declared by the manufacturer.

Type-approval testing may be carried out on the basis of simulations (WP2), manoeuvres on
the test track (WP3) and driving tests on real road traffic (WP4). However, it may not be based
solely on computer simulations and at the time of type-approval, the type-approval authority
shall conduct or shall witness at least the following tests to assess the behaviour of the ADS.

A minimum list of basic scenarios or manoeuvres that shall be tested according to the ODD
is presented:

1. Lane keeping

2. Lane changing manoeuvre

3. Response to different road geometries

4. Response to national traffic rules and road infrastructure

5. Collision avoidance

6. Avoid emergency braking before a passable object in the lane

7. Following a lead vehicle

8. Lane change of another vehicle into lane (cut-in)

9. Stationary obstacle after lane change of the lead vehicle (cut-out)

10. Parking

11. Navigating in a parking facility

12. Specific scenarios for motorway

7
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13. For dual mode vehicles, transition between the manual driving mode and the fully auto-
mated mode

Tests scenarios to assess the performance of the ADS on a test track are points 1, 2, 5, 6, 7, 8, 9
(WP3) and on-road are 3, 4, 10 (WP4).

This list of scenarios shall be tested with at least the variations of these parameters if relevant
with the ODD of the ADS :

1. different speed limit signs, so that the ADS has to change its speed according to the
indicated values;

2. signal lights and/or stop instructed by a road safety officer / enforcement agents with
situations of going straight, turning left and right;

3. pedestrian and cyclist crossings with and without pedestrians/cyclist approaching / on the
road.

4. temporary modifications: e.g., road maintenance operations indicated by traffic signs,
cones and other signalisation, access restrictions.

5. motorway entry, exit and toll stations.

6. without a lead vehicle;

7. with a passenger car target as well as a PTW target as the lead vehicle / other vehicle.

At the request of the type-approval authority, additional scenarios that are part of the ODD
can be executed. If a scenario described in the previous points does not belong to the ODD of
the vehicle, it shall not be taken into consideration.

3.1.1.4 Part 4: The credibility assessment for using virtual toolchain to validate ADS

The credibility can be achieved by investigating and assessing five properties of Modelling
and Simulation (M&S):

(a) Capability – what can the M&S do, and what the risks are associated with it;

(b) Accuracy – how well does M&S reproduce the target data;

(c) Correctness – how sound & robust are M&S data and algorithms;

(d) Usability – what training and experience is needed;

(e) Fit for purpose – how suitable is the M&S for the ODD and ADS assessment.

The manufacturer shall produce the credibility assessment framework (CAF); This document
will be investigated by the type-approval authority. The CAF provides a general description of
the main aspects considered for assessing the credibility of an M&S solution together with prin-
ciples on the role of third parties assessors in the validation process with respect to credibility.

The main CAF components and their relationship are presented on Figure 2.
The CAF and all the requirements stated in this part of Annex III shall be taken into account

in the work of PRISSMA WP2.5.
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Figure 2: Graphical representation of the relationship between the components of the credibility assessment
framework to assess the M&S [1].
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3.1.1.5 Part 5: The in-service reporting to demonstrate the safety performance in the
field

The manufacturer immediately notifies safety critical occurrences to the type-approval au-
thorities, market surveillance authorities and the Commission.

The manufacturer shall report within one month any short-term occurrences, as described in
Table, which needs to be remedied by the manufacturer to the type-approval authorities, market
surveillance authorities and the Commission.

The manufacturer shall report every year to the type-approval authority that granted the ap-
proval on the occurrences listed in Table 2. The report shall provide evidence of the ADS
performance on safety relevant occurrences in the field. In particular, it shall demonstrate that:

(a) no inconsistencies are detected compared to the ADS safety performance assessed prior
to market introduction;

(b the ADS respects the performance requirements set by this Regulation;

(c) any newly discovered significant ADS safety performance issues have been adequately
addressed and how.

All the requirements defined in part of Annex III shall be taken into account in the work of
PRISSMA WP7.

3.1.2 The French automated urban shuttle regulation [2]

An urban shuttle is defined in the article R311-1 of the french highway code such as a motor
vehicle designed and built for the transport of people in built-up areas, not meeting the defini-
tions of international categories M1, M2 or M3 and having the capacity to transport, in addition
to the driver, at least nine passengers and at most sixteen passengers , four or five of which may
be seated. Accordingly, this type of shuttle is framed by French national regulations only. The
automated urban shuttle is an highly or a fully automated vehicle as defined in the decree n°
2021-873 - 29 juin 2021 – related to penal responsibilities for automated vehicles and the con-
dition of use (see the subsection below) which can be integrated in an automated road transport
system.

In annex I of the regulation, technical specifications are given. Most of the technical spec-
ifications refers to the UN regulations setting requirements for type-approval of international
categories of vehicles. For instance, on functional safety, cybersecurity and software evolu-
tions, the text refers to the UN regulations respectively UN R 157 (Annex 4), UN R 155 and
UN R 156. In addition to the annex, 9 appendices document the requirements on specific aspects
such as:

• REQUIREMENTS CONCERNING THE APPROVAL OF VEHICLES AS REGARDS
TO STEERING EQUIPMENT ;

• REQUIREMENTS RELATING TO THE APPROVAL OF VEHICLES AS REGARDS
TO HORN AND SOUND SIGNALS;

• REQUIREMENTS RELATING TO THE APPROVAL OF VEHICLES AS REGARDS
TO BRAKING VEHICLES AND THEIR TRAILERS;

• REQUIREMENTS RELATING TO THE APPROVAL OF VEHICLES AS REGARDS
TO INTERIOR LAYOUT AND ACCESSIBILITY OF SHUTTLES;
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Table 2: List of occurrences for in-service reporting [1].
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• REQUIREMENTS RELATING TO THE APPROVAL OF VEHICLES AS REGARDS
TO SMOOTH DRIVING

• REQUIREMENTS RELATING TO THE APPROVAL OF VEHICLES AS REGARDS
TO LIGHTING

• REQUIREMENTS RELATING TO THE APPROVAL OF VEHICLES AS REGARDS
TO THE SYSTEM SAFETY AND SAFETY IN DEGRADED MODE;

• REQUIREMENTS RELATING TO THE APPROVAL OF VEHICLES AS REGARDS
TO THE DETECTION OF PRIORITY VEHICLES AND RESPONSE TO LAW FORCES;

• REQUIREMENTS RELATING TO THE APPROVAL OF VEHICLES AS REGARDS
TO CIRCULATION RULES.

To make the link with AI, these requirements are decorrelated from any artificial intelligence
brick but can have indirect impacts on the configuration of the latter. These requirements shall
all be taken into consideration by PRISSMA for AI design and development if relevant to an AI
brick in the system.

In annex II of this reglementation, specifications related to the operator and the circulation
of urban shuttles are given.

Those specifications are not directly linked to AI functions.

3.1.3 French legal and technical framework for road automated transport systems

About the safety validation of complete road automated transport systems, the French gov-
ernment has published a legal framework with the Decret n° 2021-873 - 29 juin 2021 – related to
penal responsibilities for automated vehicles and the condition of use [18]. The decree defines
terms for various automation levels and focuses on a legal framework to authorise the deploy-
ment of road automated transport system on a predefined route or zone with level 4 vehicle
and without safety driver on board. It is important to notice that this framework focuses on the

whole transport system including the vehicle fleet, infrastructure equipments and configuration,
the route or zone layouts, off-board devices, the supervision system, the operation systems, the
rules for operating or maintaining the system, the communication and location equipments, etc.

The decree covers all the phases of the life cycle from design to operation. To operate an

automated road transport system (ARTS), 4 safety validation stages have to be gone through:

1. The vehicle is to be type-approved according to the European [2] or the French [3] regu-
lation. This validation is a prerequisite for the following safety validations.

2. The designer of the technical system shall demonstrate its safety through a technical sys-
tem design case (dossier de conception du système technique DCST in French). The
technical system is designed for a type of routes / zones and not a specific path.

3. The transport service organiser builds a preliminary safety case (DPS). At this stage, the
technical system will be deployed on a specific path or zone. The case presents the test
program and the operator safety management system project that will validate and rule
the system.

4. The transport service organiser builds a safety case (DS). It is a complete presentation of
all the tests and evaluations done to build the safety of the system and their results. It
includes also complete presentation of the safety management system.
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The commissioning of an Automated Road Transport System requires a decision taken by
the service organiser on the basis of the three cases (DCST, DPS, DS) quoted above with the
positive reviews by the qualified bodies (OQA, see below).

Type-approval of the vehicle is validated by a technical service of a state member and a Type
Approval Authority. The proof of type-approval including the type-approval certificate shall be
included in the DCST at stage 2.

The decree states that the cases from stage 2 to 4 will be reviewed and validated by qualified
bodies (organismes qualifiés agréés, OQA, in French). The qualified bodies shall provide a
review on each case (DCST, DPS and DS). These qualified bodies are qualified by STRMTG
(national technical service in charge of safety for ropeways and guided transport) for 7 technical
domains:

1. Functional safety of embedded systems

2. Functional safety of connectivity and positioning devices

3. Cybersecurity

4. Infrastructures and road equipment safety

5. Safety of road behaviour of the vehicles

6. Safety management system for operational stage

7. Global evaluation of the system safety.

OQA shall be present during tests preceding commissioning. The STRMTG or the service
organiser may prescribe tests before commissioning, in addition to the safety demonstration.
Those tests may concern AI.

For an AI algorithm embedded in the vehicle, two cases can happen:

1. The validation of this AI brick embedded in the vehicle is reviewed during the type-
approval i.e. stage 1.

2. The validation of this AI brick embedded in the vehicle is not reviewed during the type-
approval i.e. stage 1.

In the first case, the OQA of the first domain (Functional safety of embedded systems) shall
take into account the evaluations done during the type-approval process.Then, the OQA of the
technical domain 1 has for mission to assess:

• the safety level compatibility of the embedded system by analysis of the safety require-
ments;

• the identification of the safety requirements exported to the operation, the path / zone
infrastructure arrangement, and other equipment;

• at stage 3 and 4, the solutions exported toward the maintenance.

In the second case, the domain 1 OQA shall assess:

• the relevance and the comprehensiveness of the safety demonstration;

• the compliance of the embedded system with the safety requirements;

• the allocation of requirements to sub-systems and functions of the embedded systems;
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• the identification of the safety requirements exported to the operation, the path / zone
infrastructure arrangement, and other equipment;

• at stage 3 and 4, the solutions exported toward the maintenance.

The validation of an AI algorithm out of the vehicle (infrastructure equipments, supervision
system for instance) shall be reviewed during stage 2, 3 and 4 by an OQA. The designated
OQA depends on the system under consideration.

The mission of the different types of OQAs are described in a guide made by the STRMTG
named in French ”Guide d’application relatif à la mission de l’organisme qualifié agréé ” (Ap-
plication guide related to the mission of the qualified bodies). This guide is available on the
STRMTG website (https://www.strmtg.developpement-durable.gouv.fr/guide-d-application-relatif-
a-la-mission-de-l-a800.html).

The part of the safety demonstration involving AI may involve all the different technical
domains.

For instance, if one or several requirements of an AI brick are exported towards other sub-
systems, equipments, components, then an OQA of the technical domain 7 shall check these
requirements. This OQA has also the responsibility to consider and to process all the inter-
face requirements between the various components of the system including the AI bricks, in
particular through the evaluation of the relevance and exhaustiveness of the successive security
analyses at the system level as well as the consideration of external risks to the system. In addi-
tion to that, the OQA technical domain 7 has the responsibility of looking after the coordination
of the other OQAs at every stage.

An other example, if one or several requirements of an AI brick are exported towards orga-
nizational rules (operation or maintenance), then the OQA of the technical domain 6 who is in
charge of the SMS for the operational stage shall assess :

• at stage 2, the identification, relevance and acceptability of the operation, care and main-
tenance principles exported to the operation and maintenance of the ARTS.

• at stages 3 and 4:

– the effective consideration of the safety requirements identified during the various
system development phases and exported to operation and maintenance in the op-
eration and maintenance documentation;

– the completeness of the provisions of the SMS ;

– the principles and conditions for operating and maintaining the system;

– the acceptability of the safety requirements identified during the development of
the system and exported to operation and maintenance;

– the clarity of the documentation formalising the SMS.

After commissioning of the vehicle, an annual audit is foreseen to control the SMS of the
operator of the system. An OQA technical domain 6 shall perform this audit.

The annual external audit must in particular cover the following topics:

• Missions of the operator;
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• Organisation of the operator, including the identification and management of operational
safety documents;

• Operating rules and procedures, including those related to staff;

• Maintenance policy, rules and procedures;

• Organisation of feedback;

• Skills management, including those related to safety tasks;

• Permanent system of internal control and evaluation of the level of safety;

• Elements relating to quality, including document management;

• Relations with State services on the occasion of accidents and incidents in operation;

• Evolution of the SMS in the past year;

• Follow-up of the action plan (if any);

• Adequacy of the safety management system to the evolution of operational safety issues.

The OQA audit input data includes in particular the analysis of accidents and incidents oc-
curring during the operation of the ARTS as well as the results of the operation of the ARTS
since the previous audit.

Another mission of OQA is to analyse accidents and severe incidents on the basis of the
analysis of the operator (article R. 3152-22 of the highway code) if the prefect represented by
its technical service the STRMTG requires it.

The OQA mission is to analyse the accident report and issue a review on the relevance of the
measures taken to prevent the recurrence of the accident.

This legal framework shall be taken into account in PRISSMA work and PRISSMA shall
provide the public authorities and the OQAs with knowledge, tools or methods.

3.2 Dedicated to AI

The use of a AI functionality implies several new requirements to ensure safety or perfor-
mance and new ethical, transparency, maintenance or explainability issues to name but a few.
Therefore, new requirements that may go beyond standards and regulations can be designed to
provide good practice guidance for design, evaluation and maintenance.

As part of the project, we drafted a long document on these requirements, which you will
find in Appendix B of this deliverable, the appendix will be the reference document for WP2,
WP3, WP4 and WP6.

Initial regulatory work is nevertheless underway at the European level with the AI ACT,
which notably puts forward measures on the transparency of the algorithms used:

• High-risk AI systems shall be designed and developed in such a way to ensure that their
operation is sufficiently transparent to enable users to interpret the system’s output and
use it appropriately. An appropriate type and degree of transparency shall be ensured,
with a view to achieving compliance with the relevant obligations of the user;

• The logging capabilities shall ensure a level of traceability of the AI system’s functioning
throughout its lifecycle that is appropriate to the intended purpose of the system;
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• High-risk AI systems shall be accompanied by instructions for use in an appropriate dig-
ital format or otherwise that include concise, complete, correct and clear information that
is relevant, accessible and comprehensible to users;

• The measures shall enable the individuals to whom human oversight is assigned to do
the following, as appropriate to the circumstances: (a) fully understand the capacities and
limitations of the high-risk AI system and be able to duly monitor its operation, so that
signs of anomalies, dysfunctions and unexpected performance can be detected and ad-
dressed as soon as possible; (b) remain aware of the possible tendency of automatically
relying or over-relying on the output produced by a high-risk AI system (‘automation
bias’), in particular for high-risk AI systems used to provide information or recommen-
dations for decisions to be taken by natural persons; (c) be able to correctly interpret the
high-risk AI system’s output, taking into account in particular the characteristics of the
system and the interpretation tools and methods available.

These AI ACT transparency measures also aim to improve interpretability but are not suf-
ficient to ensure full explicability of outputs. We can therefore add new requirements on the
subject when it makes sense:

• During testing, the system must provide explanatory elements. These elements provided
by the AI functionality following an automatic decision shall be justified with regard
to the regulations, the contractual specifications and the criticality of the system. The
explanations during the test shall be saved for a period of time depending on the criticality
of the AI functionality, in particular for the purpose of a posteriori analysis, in case of an
accident;

• In the design phase, the developer must be able to keep a trace (log or other) that can give
explanations of the elements provided by the AI functionality following an automatic
decision. The possible explanations will be saved for a period of time depending on the
criticality of the AI functionality, in particular for a posteriori analysis purposes, in case
of an accident.

To this, we can also add confidentiality or ethical requirements (compliance with the GDPR for
example).

Now that these points have been addressed, the specificity of AI leads to further compli-
cations in ensuring minimum performance, safety, robustness or resilience. These parameters
are also very much related to the type of AI under study, so a learning algorithm will not be
evaluated in the same way as an expert system for example because it has its own particularities
such as its learning database.

To meet all its specific requirements, the PRISSMA project has produced a comprehensive
document listing all the requirements adopted for the project dedicated to AI. This part will be
found in the appendix B.

3.3 Selected influencing factors

One possible way to identify influencing factors is to follow the SOTIF standard ”ISO/DIS
21448 - Road vehicles — Safety Of The Intended Functionality” [REF]. This standard is not
dedicated to AI systems exclusively. It addresses new functionalities on road vehicles for Ad-
vanced Driving Assistance Systems (ADAS) and Advanced Driving Systems (ADS) which
could lead to accidents or safety critical issues without failure. However, such systems rely
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on AI-based components to operate in an open driving area with computer vision sensors to
interpret the vehicle environment. Therefore the SOTIF and AI are extremely linked in the
autonomous vehicle evaluation.

The SOTIF process is focused on safety related issues which are the main subjects of certifi-
cation. AI issues related to performance, quality of service and other not safety-related aspects
are not taken into account. Classical system level evaluation (without AI) should be sufficient
to evaluate these aspects.

The SOTIF process starts with a robust system regarding design, quality assurance and func-
tional safety demonstration. Its goal is to identify if the system is robust enough in the SOTIF
point of view. Three main phases allow expert judgement to accept the system’s delivery for
operational use.

• Step 1: Evaluation by analysis

• Step 2: Evaluation of known potential hazardous scenarios

• Step 3: Exploration and evaluation of unknown scenarios

For AI requirements identification only the first step is pertinent and will be described.
This first step ”Evaluation by Analysis” is composed by 2 sub-steps:

• SOTIF related Hazard Identification and Risk Evaluation

• Identification and evaluation of functional insufficiencies and triggering conditions

3.3.1 SOTIF related Hazard Identification and Risk Evaluation

The objectives of this first sub-step is to identify the hazards and risks related to SOTIF at
vehicle level and to define acceptance criteria to evaluate residual risks.

For Hazard Identification we can proceed from functional Safety hazardous scenarios and
subsequently identify hazards in common with SOTIF.

This first hazardous scenario set will be completed with complimentary approaches such as
analytical, experience-based, expert knowledge.

After identification of these scenarios, a hazard qualitative evaluation shall be performed.
This evaluation criteria is the same as the one proposed at ISO-26262 without reaching the
ASIL quotation.

In the aim of evaluation, acceptance criteria must be defined. These criteria allow defining
when residual risks can be considered acceptable once functional modifications are applied. In
addition, it supports the definition of a V&V strategy.

The risk is considered mitigated if one of the following situations is reached: scenario sever-
ity does not lead to harm or every driver can control the hazardous situation.

3.3.2 Identification and evaluation of functional insufficiencies and triggering conditions

The aim of this sub-step is to identify the functional insufficiencies and triggering conditions
and to evaluate the associated system response.

The following definitions should be considered:
Triggering conditions are defined as specific conditions of a scenario that serve as initiators

for a subsequent system reaction leading to hazardous behaviour. This means that in the absence
of the triggering condition, the scenario is considered acceptable but in the presence of such it
fails.
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Functional insufficiencies are defined as performance limitations (of sensors) or insufficiency
of specification.

A performance limitation is defined as a limitation of the technical capability leading to
hazardous behaviour in combination with one or more triggering conditions.

An insufficiency of specification is defined as a specification, possibly incomplete, leading
to hazardous behaviour in combination with one or more triggering conditions.

A mixed approach is used for identification of both triggering conditions and functional
insufficiencies:

• From known triggering conditions, reveal new functional insufficiencies

• From known functional insufficiencies, identify new triggering conditions

As a result of this process a new consolidated list of triggering conditions is generated.
Subsequently, the same process described in subsection 3.3.2 is applied to evaluate the new
scenarios containing the new identified triggering conditions in order to identify if the new risk
is acceptable or not.

If the risk is not acceptable in itself, system response to the new scenarios has to be evaluated
from SOTIF point of view:

• If the system response is unacceptable, design needs to be improved

• If the system response is theoretically correct, next evaluation steps of the SOTIF process
can be applied.

3.3.3 Synthesis on Influencing Factors Identified by SOTIF

The subsequent steps of the SOTIF process imply defining test campaigns on the basis of the
identified risky scenarios. The triggering conditions and the functional insufficiencies are the
main influencing factors regarding evaluation of AI-related scenarios.

The SOTIF process aims to provide acceptance to a specific system before exploitation. In
this way, it validates a correct design. If not, the design team needs to improve the system
performance regarding failed scenarios.

The newly modified system shall again be submitted to the entire SOTIF process.
[18]

4 Evaluation protocol

4.1 Choice of the test method

The GRVA, an UNECE working group, has recently published guidelines about new assess-
ment and test methods for Automated Driving (NATM) [3]. This methodology focuses on the
vehicle validation and it is based on 5 pillars and a scenario catalogue (See Figure 3).

1. Simulation/virtual testing,

2. Track testing

3. Real world testing

4. Audit/assessment

5. In-service monitoring and reporting
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Figure 3: Diagram showing the relationship between the VMAD Pillars, Scenarios (NATM) and the Safety Re-
quirements from FRAV [3].

The NATM master document presented to the 184th World Forum for Harmonization of Vehi-
cle Regulations [17] gives the strengths and the weaknesses of all the NATM pillars. Alongside
the GRVA work, a methodological report by the DGITM is planned concerning an adaptation of
the principles set in the NATM document for the Automated Road Transport Systems (ARTS).
The vehicle-centric vision of the NATM document is extended to the ARTS. The document
should soon be available on the DGITM website. This work is part of the deliverables to define
how to use scenarios in the safety demonstration of ARTS. The following Tables 3, 4, 5, 6, 7
give an overview of all these weaknesses and strengths. Moreover, PRISSMA experts shall
enrich this work. PRISSMA contributions are presented in red in the Tables. The quantities of
tests of each pillar for a full validation shall be defined by the vehicle / system manufacturer.
These tables provide valuable information for PRISSMA to recommend appropriate test pro-
grams for each pillar according to the IA type, or the sub-system or the whole system to be
evaluated or validated.

For the PRISSMA project, we will therefore use a similar test protocol. In fact each part of
the NATM method is covered by a PRISSMA WP :
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Table 3: Strengths and Weaknesses of the Virtual Testing Pillar [17]

Strength Weakness
Controllability – Virtual testing affords an un-
matched ability to control many aspects of a
test.
Agility – Virtual tests allows for system
changes to be reevaluated immediately.
Efficiency – In MIL and SIL, virtual tests
can be accelerated faster than real-time so that
many tests can be run concurrently in a rela-
tively short amount of time.
Cost effectiveness at test execution – In spite
of the investments required to develop, vali-
date and maintain a virtual testing toolchain,
the running costs connected to its use are con-
siderably lower than those required by physi-
cal testing.
Wide scenario coverage – Compared to other
testing methods, virtual testing allows a wider
exploration of safety-critical scenarios. By
properly combining the experiments parame-
ters it can for example reduce the space of the
known unknowns and to the extent possible
that of the unknown unknowns (including the
effect of system failures).This scenario cover-
age enables also better analysis of the vehicle
ODD and its boundaries.
Data gathering and analysis - Virtual testing
offers a convenient and error-free platform for
data gathering and analysis of the ADS perfor-
mance. Once Qualified, that data can serve as
a significant contribution for assessing the risk
from the ADS. Note: this advantage benefits to
the complete automated transport system vali-
dation
Repeatability and replicability – Simulation
affords the re-execution of the same virtual
test without deviations due to stochastic phe-
nomena. Faults in the functioning of the ADS
can thus be identically replicated at any mo-
ment.Note: this advantage benefits to the com-
plete automated transport system validation
A deep OD analysis - Before a L4 ADS de-
ployment (on a specific route), modelling this
route with the infrastructure, road equipment,
lightning orientation, etc. can provide evi-
dences of the efficiency of new road equipment
or help urban planners to choose safer infras-
tructure for the future ADS services

Lower environmental fidelity/reliability
– It is difficult, and likely impossible for
models to completely reproduce the en-
vironment, responses, as well as the be-
haviour of the vehicle, other road users etc.
in the real world. Also the validation pro-
cess cannot prove the validity of the simu-
lation across all possible scenarios.
Risk of over-reliance. Without proper
consideration of models’ intrinsic limita-
tions, a risk exists to put too much empha-
sis on virtual testing results without suf-
ficient proof of their validity by physical
testing.
Expensive software life-cycle. The avail-
ability of a simulation model to execute
virtual testing requires covering certain as-
pects of the software life-cycle which can
be costly and time-consuming
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Table 4: Strengths and Weaknesses of the Track Test Pillar [17] - PRISSMA additions in red

Strength Weakness
Controllability – Track testing allows for
control over many of the test elements, in-
cluding certain aspects of the ODD.
Fidelity – Track testing involves functional,
physical ADS-equipped vehicles and lifelike
obstacles and environmental conditions.
Reproducibility– Track testing scenarios
can be replicated in different locations by
different testing entities.
Repeatability – Track testing allows for
multiple iterations of tests to be run in the
same fashion, with the same inputs and ini-
tial conditions.
Efficiency – Compared to real-world test-
ing, closed-course testing can accelerate ex-
posure to known rare events or safety criti-
cal scenarios by setting them up as explicitly
designed test scenarios. Road testing by con-
trast could be an inefficient way to test less
co manifesting by chance.
Track testing can be used to validate the
quality of the simulation toolchain by com-
paring an ADS’ performance within a sim-
ulation test with its performance on a test
track when executing the same scenario.
Testing system limits - using appropriate
test equipment with a efficient safety man-
agement, dangerous scenarios and system
limits can be evaluated on tracks while it is
not possible to gather those data with real
world tests
VIL benefits - VIL mixes virtual tests and
real tests on tracks. It enables to assess
dangerous scenarios more safely (high speed
collision scenarios) or to test more complex
scenarios with multiple targets for example.

Significant time –Track testing can take a
significant amount of time to set up and exe-
cute.
Costly – Track testing may require a sub-
stantial number of personnel and specialized
test equipment (e.g., obstacle objects, mea-
surement devices, safety driver).
Limited variability – Track testing facility
infrastructure and conditions may be diffi-
cult to modify to account for a wide vari-
ety of test elements (e.g., ODD conditions).
They are restricted to their geometries, di-
mensions, size and ODD limitations such as
weather conditions, time of day, number and
type of other traffic agents.
Safety risks – Track testing with physical
vehicles and real obstacles presents a poten-
tially uncertain and hazardous environment
for the test participants (e.g., safety driver
and experiment observers). But track safety
management and appropriate test equipment
minimise these risks
Representativeness even with its increased
fidelity. Whilst things like pedestrians can
be included, these won’t typically be real
people due to safety reasons and the clutter
or real-world environments cannot be repli-
cated.

21



[L1.5] Tests and audit requirements - Final report

Table 5: Strengths and Weaknesses of the Real World Test Pillar [17]

Strength Weakness
High environmental validity – allows for
validation of the vehicle in its intended
ODD(s) and the diverse conditions these
may present.
Can be used to test scenarios elements, such
as weather and infrastructure (e.g., bridges,
tunnels), that are unavailable through track
testing.
Real-world testing may be used to validate
the simulation and track-testing by com-
paring an ADS’ performance within a simu-
lation and track test with its performance on
in a real-world environment when executing
the same scenario.
Can be used to assess aspects of the ADS
performance related to its interaction with
other road users, e.g. maintaining flow of
traffic, being considerate and courteous to
other vehicles.
Model, single software, and toolchain val-
idation

Restricted controllability – Public-road
scenarios afford a limited amount of control
over ODD conditions.
Restricted reproducibility – Public-road
scenarios are difficult to replicate exactly in
different locations.
Restricted repeatability – Public-road sce-
narios are difficult to repeat exactly over
multiple iterations.
Limited scalability – Public-road scenarios
may not scale up sufficiently.
Costly but not as costly as track testing –
Requires a number of resources and is time-
consuming.
Potential impact on traffic and safety author-
ities
New competencies may need to be devel-
oped by authorities
Safety risks: on-road testing could subject
test personnel and the public to significant
risks of unsafe behavior.

Table 6: Strengths and Weaknesses of the Audit Pillar. Table derived from [17]

Strength Weakness
Partial maturity – Risk analysis, safety-
by-design concepts as well verifica-
tion/validation test methods are standard
development methods used in the automo-
tive industry for years to ensure functional
safety of electronic system (fail safe). It
is expected that similar methods will be
followed by manufacturers to minimize
unsafe and unknown scenarios for ADSs
in a systematic manner (operational safety
beyond failures).
Robustness - Regarding the safety assess-
ment, the tools under this pillar will provide
a more robust demonstration on the ADS
safety (coverage) than a few test runs. The
manufacturer’s safety case will be reinforced
if it is assessed by an independent auditor
and confirmed by targeted physical or virtual
tests.

Audit scope definition - Test runs will in
particular be needed to demonstrate that the
vehicle exhibits minimum performances for
standard manoeuvres (e.g. normal lane keep-
ing, lane change), key critical scenarios (e.g.
emergency braking) and in traffic conditions
(e.g. smooth integration in the traffic). It
remains to be decided at this stage whether
these tests shall be standardized across man-
ufacturers for some defined situations or
shall be tailored to the results of the risk as-
sessment/design of the ADS or both.
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Table 7: Strengths and Weaknesses of the In service monitoring and reporting Pillar. Table derived from [17] See
89. To 94.

Strength Weakness
Most Realistic – Data from the field will
be the most realistic way to assess the safety
performance of an ADS over a wide range of
real driving traffic and environmental condi-
tions.
Scenario Database update - Data from the
field are also instrumental to ensure that the
scenario database is updated with the latest
scenarios, in particular those deriving from
the increasing use of ADS.
Learning from experience - Regarding
safety recommendations, learning from in-
service data is a central component to the
safety potential of ADSs. Lessons learned
from a crash involving ADSs could lead to
safety developments and subsequent preven-
tion of that crash scenario in other ADS.
Feedback from the operational experience is
recognized as best practice for safety man-
agement in the automotive sector as well as
in other transport sectors (e.g. already in
place in aviation, railway and maritime sec-
tors). Field operation data can also provide
evidence of the positive impact of ADs on
road safety.

Limitations might derive from the quantity
of data to be handled (too much data is as
problematic as too little data), availability
of tools for automatic scenario generation,
and identification of responsibility handlers.
Therefore, the outcome shall be a propor-
tionate, efficient and uniform system.
Methods to verify the reliability of collected
data should be developed. The data col-
lected should be comparable amongst manu-
facturers. It will create challenges on which
data and how these data are collected and re-
ported (definition of suitable reporting crite-
ria). Timewise, another challenge is the de-
velopment of the in-service safety monitor-
ing framework in a timely manner in order to
serve AVs market deployment. Data privacy
should also be taken into account. A stan-
dardized format for communication of infor-
mation will be needed to allow processing
by authorities in a standard manner and that
any outcomes are easily shareable or open
for analysis by other authorities. Different
type of data may be needed depending on the
purpose of the data collection.
Processes for reporting the operational feed-
back from AVs should be developed for the
automotive sector taking into account the
higher number of monitored vehicles and
events to be recorded.

23



[L1.5] Tests and audit requirements - Final report

• ”ODD” is covered by WP8

• ”Requirements” is covered by WP1 (see annex of this document)

• Test methods by simulation is covered by WP2

• Test methods by track tests is covered by WP3. WP3 extended to the test bench also.

• Test methods by real world tests is covered by WP4.

• Safety Management System of the manufacturer is covered by the audit in WP6

• service Monitoring and reporting is covered by WP7

• Virtual Tool assessment is covered by the tasks 2.5 and 1.3

• Scenarios is covered by the tasks 2.4 and 1.2 (see section 4.2 of this document)

This is why our protocol will be broadly based on that of NATM.
Having already focused on the requirements part applicable to the various tests, monitoring

and auditing, this document will look at the problems linked to the scenarios part and the cov-
erage problems before giving advice on the right test methods to apply. The control of tools
(virtual or otherwise) will be covered in task 1.3.

4.2 Generation of scenarios and test cases

There is a consensus in the automotive industry that all AV test protocols should be based on
a scenario approach. The first task of any protocol is therefore to describe how these scenarios
are selected and constructed.

4.2.1 Introduction to the scenario approach

The objective of this section is to present the PRISSMA approach to generate scenarios and
test cases to evaluate, validate and certify an AI. First, after hours of semantic discussion be-
tween the project participants, a paragraph giving clear definitions and a framework was found
out to be necessary. Then, the context of the global scenario approach pushed by the legal
frameworks is exposed and applications to different bricks of AI are studied. This scenario
management is analysed at the functional and logical levels. Finally, the last paragraph is fo-
cused on the generation of concrete scenarios and test cases.

4.2.2 Definitions

PRISSMA as a French project will take as references the following sources:

• The NATM (ONU work) which addresses the vehicle equipped with ADS type approval
[19],

• The European regulations [1] which addresses the vehicle equipped with ADS type ap-
proval,

• The French ministry deliverables ( [20], [21],or [16], [22]) about ARTS safety demon-
stration.

The NATM Annex 1 of [19] gives this definition of “Traffic scenario” (or scenario for
short) : a sequence or combination of situations used to assess the safety requirements for
an ADS. Scenarios include a driving maneuver or sequence of driving maneuvers. Scenarios
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can also involve a wide range of elements, such as some or all portions of the DDT; different
roadway layouts; different types of road users and objects exhibiting static or diverse dynamic
behaviours; and, diverse environmental conditions (among many other actors). “Complex Sce-
narios” means a traffic scenario containing one or more situations that involve a large number
of other road users, unlikely road infrastructure, or abnormal geographic/environmental condi-
tions.

These definitions do not give a clear and exact list of what must be included in a traffic
scenario.

The EU ADS act gives to a scenario the exact same definition as the NATM paper.
The DGITM 3 gives this definition: ”scenario”: Sequence of scenes and events and/or ac-

tions. A scenario is the temporal development of scenes. A scenario consists of at least an initial
scene, an event or an action, and a final scene [21]. Moreover, in a later deliverable, DGITM
describes the content of a scenario with 5 layers [16]:

• Static environment: road description,signs, etc.

• EGO manoeuvre: such as turn left, follows an other vehicle, etc.

• Hazards: collision precursory event or system failure, etc.

• System response: such as braking or avoiding an obstacle, etc.

• Hazards affecting system response : such as environmental conditions, masking of an
obstacle, slippery road, etc.

According to the NATM [19], it exists 2 categories of scenarios:

• “Nominal Scenarios” means a traffic scenario containing situations that reflect regular
and non-critical driving manoeuvres.

• “Critical Scenarios” means a traffic scenario containing a situation in which the ADS
needs to perform an emergency maneuver in order to avoid/mitigate a potential collision,
or react to a system failure.

The EU ADS act defines 3 categories of scenarios:

• “Nominal traffic scenarios” mean reasonably foreseeable situations encountered by the
ADS when operating within its ODD. These scenarios represent the non-critical inter-
actions of the ADS with other traffic participants and generate normal operation of the
ADS.

• “Critical scenarios” mean scenarios related to edge-cases (e.g. unexpected conditions
with an exceptionally low probability of occurrence) and operational insufficiencies, not
limited to traffic conditions but also including environmental conditions (e.g. heavy rain
or low sunlight glaring cameras), human factors, connectivity and miscommunication
leading to emergency operation of the ADS.

• “Failure scenarios” mean the scenarios related to ADS and/or vehicle components fail-
ure which may lead to normal or emergency operation of the ADS depending on whether
or not the minimum safety level is preserved.

3Direction Générale des Infrastructures, des Transports et des Mobilités - a department of the French ministry
for Transport
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It can be noticed that in the definition of critical scenarios in the NATM document, it includes
the system failures. Furthermore, the definitions of EU ADS act are more precised compared to
the NATM document.

Finally, the DGITM does not classify scenarios in categories but rather describes types of
scenarios depending on the sources from where scenarios can be built. 4 sources of scenarios
are listed in the [16]:

• “Scenarios derived from design of the system” representing scenarios compiled from
ODD and OEDR description. It only consists of nominal scenarios as in EU ADS defini-
tion.

• “Accident scenarios” representing scenarios derived from in-depth analysis of physical
and material accidents extracted from referenced databases.

• “Scenarios derived from risks analysis” representing scenarios of hazardous situations
covering the reasonably foreseeable risks affecting the system. It represents all the sce-
narios of functional safety, i.e. failure scenarios as defined in the EU ADS act but also
the scenarios derived from the SOTIF approach tackling critical scenarios.

• “Scenarios derived from driving” representing scenarios of hazardous situations still
unknown. They can be identified by numerical and physical driving before commission-
ing and after commissioning with in-service monitoring.

These scenarios can be completed by scenarios from experts. This approach differs from the
EU ADS act or the NATM document. Nevertheless, it remains consistent as the categories of
scenarios defined in these texts are covered by the different sources.

Documents of the DGITM, the EU ADS act and the NATM document agree on the definition
of 3 levels of detail of scenarios (see also 4):

• “Functional Scenario”: Scenarios with the highest level of abstraction, outlining the
core concept of the scenario, such as a basic description of the ego vehicle’s actions; the
interactions of the ego vehicle with other road users and objects; and other elements that
compose the scenario (e.g. environmental conditions etc.). This approach uses accessi-
ble language to describe the situation and its corresponding elements. For the scenario
catalogue, such an accessible (i.e., natural and non-technical) language needs to be stan-
dardised to ensure common understanding between different ADS stakeholders about the
scenarios.

• “Logical Scenario”: Building off the elements identified within the functional scenario,
developers generate a logical scenario by selecting value ranges or probability distribu-
tions for each element within a scenario (e.g., the possible width of a lane in meters).

• “Concrete Scenarios”: Concrete scenarios are established by selecting specific values
for each element. This step ensures that a specific test scenario is reproducible. In addi-
tion, for each logical scenario with continuous ranges, any number of concrete scenarios
can be developed, helping to ensure a vehicle is exposed to a wide variety of situations.

These definitions are extracted from the NATM document. The EU ADS act does not define
these levels of details and the levels of details in the DGITM document are equally defined as
the NATM document.

The level of details of the scenarios is used depending on the step of the safety demonstra-
tion. For instance, functional scenarios are used at the beginning of the implementation of the
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Figure 4: 3 levels of scenarios defined by NATM [3].

scenario approach. The closer we get to implementing the tests, the more precise the scenarios
are, to the point of selecting certain concrete scenarios to cover the whole range of reasonably
foreseeable scenarios for a specific system.

4.2.3 Scenarios for ADS and ARTS Validation: Regulation Scope

The general technical and legal frameworks of the safety validation of automated and au-
tonomous vehicles and automated road transport systems (ARTS) are still under definition con-
cerning the methodology the parties involved have to follow.

The EU ADS Act [1], published in 2022, is the regulation defining the methods for an ADS
type approval. The automated driving system is embedded in the vehicle. The EU ADS act is
focused on the automated vehicle approval.

In France, the DGITM 4 and the STRMTG 5 have launched several working groups (WG)
to clarify the scenarios approach in the safety demonstration. The scope of these WG is focused
on the ARTS, meaning the fleet of automated vehicles and all the systems around.

Note : Both the EU ADS act and the DGITM WGs take the NATM as the theoretical basis
to be applied.

A first methodological report was released by the DGITM in February 2022 to present a
theoretical approach of the use of scenarios to validate automated road transport systems [21].
It attempts to detail how scenarios feed off ODD, OEDR and pathway description. On the other
hand, the STRMTG works on the concept of the GAME demonstration [23], “GAME” like
Globally at least equivalent. This principle aims at defining safety levels and objectives that the

4Direction générale des infrastructures, des transports et des mobilités,(Branch of ministry of Transportation)
5French Technical service in charge of safety for ropeways and guided transports
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ARTS shall reach. However, the links between the scenario approach and the GAME principle
stay unclear. The DGITM deliverable [21] also characterises scenarios as a description in 5
layers (see the section Definitions above). Each description layer is illustrated with examples.
At the end of the document, lists of scenarios without critical hazards are suggested.

The second document published by the DGITM : Scenario generation, supply, and enrich-
ment [16] complements the first one with a reminder of certain definitions, a method of supply-
ing scenarios and a process for scenarios enrichment. At the end of the methodological report,
examples of the combinatory of scenarios are given. First, this report presents terms, basic
concepts and definitions. All the definitions are consistent with those presented in PRISSMA
L8.1 (Terminologie commune au projet PRISSMA). Then, the document details the method of
scenario enrichment to adopt:

• A scenario definition by layers,

• The comparison of scenario descriptors with attributes, from different sources,

• The enrichment with new descriptors and attributes of these descriptors,

• The combination of these descriptors and attributes to enrich the initial list of scenarios.

Furthermore, the descriptors and the values of descriptors may be updated following feedback
or the addition of a new use case for instance.

As explained in the 4.2.2, DGITM adopts another approach to classify scenarios compared
to the EU ADS act and the NATM document. Indeed, scenarios are categorized by sources and
not by types.

For comparison, the NATM [17] also presents a list of methods to gather scenarios:

(a) Analyzing human driver behaviour, including evaluating naturalistic driving data;

(b) Analyzing collision data, such as law enforcement and insurance companies’ crash databases;

(c) Analyzing traffic patterns in specific ODD (e.g., by recording and analyzing road user
behaviour at intersections);

(d) Analyzing data collected from ADS’ sensors (e.g., accelerometer, camera, radar, and
global positioning systems);

(e) Using specially configured measurement vehicle, onsite monitoring equipment, drone
measurements, etc. for collecting various traffic data (including other road users);

(f) Knowledge/experience acquired during ADS development;

(g) Synthetically generated scenarios from key parameter variations;

(h) Engineered scenarios based on functional safety requirements and safety of intended
functionality.

Most of the sources of scenarios overlap between the DGITM document and the NATM
document. For instance, knowledge and experience scenarios (NATM) correspond to scenarios
derived from design of the system as described in the deliverable of the DGITM (Scenario
generation). On the contrary, it seems that synthetically generated scenarios from key parameter
variations (NATM) are not covered by any of the DGITM sources of scenarios. At the end,
PRISSMA shall take into account all of the sources of scenarios.

As quoted above, a third methodological document of the DGITM ”Utilisation des scénarios
pour la démonstration de la sécurité des STRA” (Use of the scenarios for safety demonstration
of ARTS) [22] addresses the adaptation of the NATM principles to the ARTS.
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Figure 5: Scenario Framework specified by NATM [3] and [1]

All DGITM and STRMTG documents are focused on the safety demonstration of ARTS.
However, the first step to build an ARTS is to plan the deployment of a Type-approved auto-
mated vehicle. As the EU ADS act [1] is the regulation that defines the approval methods, it is
important for PRISSMA to take it into account. The EU ADS act in appendix 1 part 1 of annex
III takes the global framework given in the NATM document to manage the different types of
scenarios as presented in Figure 5. This approach is developed to validate the ADS with sce-
narios. It is important to notice that functional requirements play a major role in the scenario
management shown in Figure 5. PRISSMA requirements are further developed in Annex B.

The following subsections 4.2.4 and 4.2.5 present the different scenarios shown on Figure
5.

4.2.4 Nominal and Critical Scenarios

A clear and clean decomposition of scenarios into ’Nominal’ and ’Critical’ has proved to be
rather simplistic in the autonomous and automated road transport systems scope. The following
statements illustrate this reasoning and are however crucial to grasp the importance of the nature
and potential evolution of each scenario type:

• a scenario that is initially considered as nominal (i.e. no potential and immediate risk)
can become a critical scenario given certain conditions.

• today, an OEM may consider a scenario as no longer ’nominal’ but rather ’nominal on
degraded conditions’ in which the system is design to adopt a resilience functioning mode,
distinct from the nominal one, in the light of risk prevention.

• a scenario can be considered as a ’near miss’, and ’edge case’ but not necessarily ’critical’,
this however does not make it ’nominal’.
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• the level of criticality of a scenario is inevitably determined by the function being tested.
It is pertinent, given the capabilities of the function or of the vehicle, to assess the possible
parameter combinations that would result into a scenario that the vehicle can and should
manage safely and to evaluate the potential repercussions of such actions in the actors of
the environment.

• an OEM should have the liberty and the obligation to provide safety concepts and their
documentation that is auditable so that according to the functions being tested and their
attached ODD, evidence can be provided on the strategy used for testing and the assess-
ment of scenarios that are considered as nominal and those which are not.

• some situations can be judged subjectively as critical or as nominal when the criticality
is rather (subjectively) low and therefore represent a challenge when annotating datasets
for AI developement and testing.

In this sense, to this day, it seems that trying to define in a first stage generic classes of
scenarios as ’Nominal’ or ’Critical’ is not only a challenge but a non suitable solution for a
complex problem. The frontier between these classes is rather blurry and scenarios may be
rather be considered as ’nominal’ or ’non-nominal’ where the ’non-nominal’ class encompasses
a subset of critical and edge-cases scenarios.

In the light of the previous statements, it is not obvious to establish the frontier between types
of scenarios: nominal scenarios (normal functioning mode), nominal on degraded conditions
(subject to disturbances), and critical scenarios (where risk is present and the SUT’s behavior is
uncertain).

The frontier of this typology will depend on the design of the SUT and therefore on the audit
performed on this design.

• Nominal Scenarios: can be covered by audit and light sampling tests in order to confirm
what has been audited.

• Nominal Scenarios on Degraded Conditions: are tested through a more detailed sam-
pling in order to verify that the transition are properly performed (DDT fallback) and that
the frontiers between the nominal and nominal degraded mode are properly implemented.

• Critical Scenarios: are a key aspect to address due to the uncertainty of the system’s re-
sponse in the occurrence of a potential accident. In this context, among scenarios leading
to potential accidents, it would be useful to identify those where the system can avoid the
accident, those where the system cannot avoid it but can limit the consequences, and those
where the system cannot avoid the accident. In this case, the testing approach should be
the following:

- In the case of scenarios of accidents that should be avoided by the system and that where
its behavior is uncertain, a systematic test sampling shall be done.

- In the case of scenarios where the accident cannot be avoided but the consequences are
expected to be limited by the system with uncertainty in implementation, an expert test
sampling shall be done.

- In the case of scenarios where the accident cannot be avoided, no testing is proven to be
useful.

A PRISSMA method to generate nominal and critical scenarios from ODD and OEDR anal-
yses is presented in Annex A.
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Figure 6: Generic Framework for evaluation of AI-powered systems in ADS

4.2.5 Failure Scenarios

These scenarios are related to ADS and/or vehicle components failure. They may lead to
emergency maneuver or minimal risk maneuver. Knowledge about these scenarios may come
from the same sources than other scenarios as explained in paragraph 4.2.3.

However, PRISSMA considers that the principles of the ISO26262 [24] shall be applied to
the ADS to define a correct set of failure scenarios.

For instance, it can happen that the ADS finds itself operating outside of its ODD. For ex-
ample, a automated shuttle that is not supposed to run under heavy rain can find itself under a
rain shower. These kind of scenario can be considered as failure and it is important to include
them in the scenario database to assess the adequate responses of the system.

4.2.6 Focus on the IA components

An AI-powered system in autonomous driving is a component that employs AI algorithms
and techniques to carry out various functions critical for an automated vehicle in its operating
environment. These functions include perception, localization, decision-making, path plan-
ning, control, and more. A (simulated) sensor suite is needed to enable the vehicle to sense its
surroundings, including cameras, LiDAR, radar, etc.. This comprehensive sensor setup aims
to contribute to a more realistic and complex data source, allowing a more accurate and reli-
able perception of the surrounding environment. By leveraging advanced AI techniques, au-
tonomous vehicles can perceive, understand, and navigate their environment safely and effi-
ciently. In order to evaluate the AI powered system, it is important to have a generic framework
for testing the system with realistic scenarios in real and simulated conditions. The evalua-
tion Framework proposed in [25] can be split into three modules: the scenario generation, the
scenario execution and the evaluation as it is by the figure 6.
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4.2.6.1 The scenario generation

The scenario generation module is crucial in building the framework, generating scenarios,
necessary configurations, and selecting algorithms for evaluation. As it is illustrated in the
Algorithm 1, it is responsible for generating configurations of evaluation scenarios based on
Operational Design Domain (ODD) and Object and Event Detection and Response (OEDR).

Algorithm 1 SCENARIO GENERATION
1: procedure GENERATE ▷ S: system, E: environment
2: ODD , OEDR , Objs← DEFINE(S , E) ▷ Define ODD, OEDR, and also objectives Objs
3: SC ← CONFIGURE(ODD , OEDR) ▷ Generate configurations of scenarios SC
4: ACs← GENERATE(Objs) ▷ Generate adverse conditions ACs
5: As← SELECT(Objs , Dataset) ▷ Select the algorithms As based on objectives Objs, also the dataset
6: GTC ← CONFIGURE(Objs , S , E , As) ▷ Generate configurations of ground truth GTC
7: return SC, GTC, Objs, As ▷ Return configurations, objectives, adverse conditions, and selected

algorithms
8: end procedure

It also selects candidates of AI algorithms for the framework according to specific objectives,
then evaluates and validates them based on a representative real-world scenario and dataset.
Moreover, the generator component generates the configuration of the ground truth for the ex-
ecutor based on the selected algorithms, ensuring the accuracy and reliability of the evaluation
process. The scenario generation should be a carried out using the PRISSMA method detailed
in the Annex A. However, when configuring scenarios, it is imperative to define the types of
objects the AI system under testing should detect. Furthermore, the scenario should include
events that the system should recognize and respond to, such as sudden lane changes, emer-
gency braking, or any other relevant mapping. By incorporating these elements, the scenario
enables the evaluation and improvement of the system’s perception and response capabilities.

To select algorithm candidates for an AI-powered system, it is essential to establish the
domain of AI first. In the case of a visual perception system, deep learning methods like Con-
volutional Neural Networks (CNNs) have demonstrated promising results and are commonly
used for image detection and segmentation tasks. Once the domain is determined, specific
tasks should be extracted based on the system’s objectives. After an extensive investigation
of algorithms suitable for these tasks within the chosen AI domain, potential candidates can
be identified. These candidates will undergo training using relevant datasets, and if possible,
the models will be fine-tuned. Subsequently, the performance of the trained models will be
validated to ensure they meet the necessary criteria for further consideration.

4.2.6.2 The scenario execution

The scenario execution module is responsible for executing the different test cases on the
integrated platform and tools, which are built by the output from the generator component of
the framework, and also generating different types of results. The module must ensure that
the system is executing properly and that the intermediate results are being generated correctly,
and then passed back to the generator component as feedback. This process aims to refine the
parameters inside the configuration of scenarios and adjust ODD or OEDR if needed. If there
are any issues or errors in the execution, it needs to be resolved before passing on the final
results to the evaluator component. Once the execution is complete, the final results are passed
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to the evaluator component for assessment against the different types of evaluation metrics. The
process of the execution is expressed by the Algorithm 2.

In real-world environments, ground truth can be generated through manual annotation or by
using calibrated and accurate sensors or devices to capture the actual values of the variables
being measured. In the proposed framework, this type of ground truth is used for training and
preliminary validation of the selected algorithm. The existing datasets such as the BDD100k
dataset [26] has been widely used in visual perception research and provides ground truth la-
bels for various tasks as shown in figure 7a. In the evaluation framework, the selection and
configuration of the ground truth are based on the chosen algorithms and the characteristics of
the environment. Ground truth data can be generated by using a physics engine to model the
behavior of the vehicle and its interaction with the environment, figure 7b shows the different
ground truth for visual perception tasks in Pro-SiVICTM. In the simulation evaluations, the
ground truth generated by the simulator will be collected by the executor and used for the final
evaluation process while in real world evaluation, references and groud truth must most often
be pre-processed by an operator.

Algorithm 2 SCENARIO EXECUTION
1: procedure EXECUTE( SC, As, GTC, ACs ) ▷ Outputs from generator as inputs of executor
2: Ts← BUILD(As , ACs) ▷ Build the test cases with different algorithms As and adverse conditions ACs
3: for Ti ∈ Ts do
4: SI , EI ← INSTANTIATE(S with Ai in Ti , E with SC , P ) ▷ Instantiate the system SI with

algorithm Ai in test case Ti and environment EI with scenario configuration SC on the integrated platform
P

5: TaTi ← T.GENERATE(ST
i , ACi in Ti) ▷ Generate the test action TaTi based on the environment

state ST
i and the adverse condition ACi in the test case Ti

6: SaTi ← S.GENERATE(ObsTi ) ▷ Generate system action SaTi based on the observation ObsTi
7: ST

i , ObsTi ← E.UPDATE(TaTi , SaTi ) ▷ Environment updates based on system actions SaTi and test
actions TaTi

8: end for
9: GTs , Rs← P.GENRATE(Obs , GTC) ▷ P records final results Rs and ground truth GTs (based on

ground truth configuration GTC) from the observer Obs
10: return Rs, GTs ▷ Return final results and the ground truth
11: end procedure

(a) BDD (b) Pro-SiVICTM

Figure 7: Ground truth of visual perception from the real world and simulation
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4.2.6.3 The evaluation

The evaluation module is responsible for evaluating the performance of the AI-powered sys-
tems. It applied the selected evaluation metrics and KPI to the output from the executor, and
then hereby evaluate the results combining corresponding ground truth. The overall process can
be abstracted as shown in the Algorithm 3. The metrics used in the framework are chosen based
on the different levels inside the evaluation objectives of the system, such as component level,
system level, and scenario level.

Algorithm 3 EVALUATION
1: procedure EVALUATE ( Rs, GTs, Objs ) ▷ Evaluates the final results with ground truth
2: LEs← LEVEL(Objs) ▷ Define different levels of Evaluation LEs
3: Metrics← Select(LEs) ▷ Select metrics for different evaluations
4: Rmetrics ← Process(Rs , GTs , Metrics) ▷ Calculate the result of metrics Rmetrics

5: return V isualize(Rmetrics), Analyze(Rmetrics) ▷ Visualize and analyze the result of metrics Rmetrics

6: end procedure

system evaluation: In order to evaluate the high-level quality of AI-powered system in
ADS, such as a visual perception system, it is necessary to implement a full mobility ser-
vice and propose relevant and representative scenarios involving an exhaustive set of condi-
tions/configurations/situations allowing for quantification of the performances and the quality
of the service. The metrics (a case of visual perception system) can refer to a set of specific Key
Performance Indicators (KPIs):

• Risk specific: Longitudinal and lateral distance, Time to collision (TTC), Time Exposed
Time-to-Collision (TET), Deceleration Rate to Avoid a Crash (DRAC), etc.,

• Task (detection/tracking) specific: Success rate, Loss, Distance, etc.,

• Time specific: Frequency, Time to detect/track, False alarm frequency.

Component evaluation: This level of evaluation focuses on the performance of individual
algorithms or functions within the AI-powered system. The metrics are typically related to the
functionalities of the perception function such as detection, segmentation and tracking [25].

scenario evaluation: This level of evaluation involves testing the performance of an AI-
powered system under various challenging conditions, such as adverse weather, low lighting,
and unexpected obstacles. These complex scenarios can be difficult to replicate in real-world
testing, which makes simulation tools and virtual environments more essential. The use of
simulation allows for the creation of complex scenarios that can be repeatedly tested, analyzed,
and modified to evaluate, analyze, and improve the performance of the system. The related
metrics can vary depending on the specific application and system requirements. However,
some common metrics for this level of evaluation include:

• Robustness: This metric evaluates the ability of the system to perform consistently and
accurately in various challenging and unforeseen situations, and is usually reflected in
various performance metrics, such as accuracy, precision, recall, and F1-score, etc. Ro-
bustness can be measured by analyzing these performances in different scenarios and
under different conditions, and also by assessing their ability to maintain performance
levels over time.

• Reliability:This metric evaluates the system’s ability to make reliable decisions in emer-
gency situations or other adverse situations.
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Figure 8: MOSAR- Scenario Manager. Figure from [4]

4.2.7 From functional scenarios to test cases

4.2.7.1 MOSAR Methodology and Tool

To illustrate our point, we have decided to use the MOSAR tool provided by IRT SystemX,
but any tool that does similar work can be used.

MOSAR is a methodology and associated platform developed by IRT SytemX in collabo-
rative projects including OEMS. MOSAR Scenario Manager is part of a suite with a precise
focus on scenario management. PRISSMA’s deliverable D2.6 [4] further presents this scenario
management methodology and tool. This paragraph is an abstract of the information about
MOSAR, for more details D2.6 can be consulted [4].

MOSAR Scenario Management platform allows users to have a database to register, store,
classify, search, trace, analyze, import and export scenarios from and into the database. This
tool can be used to manage descriptive scenarios which can also be transformed into test cases
for simulation in different formats (OpenScenario, SCANeR studio, etc.). Scenarios are orga-
nized in a tree-like structure based on the three description levels: functional, logical and con-
crete. Scenarios are stored in specific data structures called containers which provide the means
for storage, access restriction in order to ensure confidentiality (among other requirements),
and collections access in order to describe scenarios; this is access to specific collections, i.e.
elements related to infrastructure, actors, equipment, and behaviors among others.

The statistical analysis feature existing in MOSAR allows users to visualize the existing data
in the platform based on the selection of parameters or conditions predefined by the opera-
tors. This feature is particularly useful to address analytically real world driving and visualize
parameter distributions of encountered situations.

The structure and management of scenario containers can allow to assess on the coverage of
requirements of system design.
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4.2.7.2 Using Formal Conformance Testing to Generate Concrete Scenarios for Autonomous
Vehicles

Starting from a test purpose, generating suitable concrete scenarios to test the behavior of
AVs (Autonomous Vehicles) in relevant and potentially critical situations is a fundamental brick
in the validation chain. However, due to the complexity of the involved systems and the dimen-
sion of the configuration space, obtaining interesting scenarios and a rigorous coverage guaran-
tee is a challenging problem in autonomous driving. For the concrete scenarios generation, two
techniques are commonly used: constrained random generation and manual specification [27].
Randomly generated scenarios can be easily produced, but their relevance might be difficult to
assess, since they can present a high level of redundancy, which is hard to detect and strongly
limits their coverage [27]. On the other hand, manually specifying a large number of concrete
scenarios is extremely time consuming and a satisfactory coverage of all possible situations is
hardly achievable.

Figure 9: Overview of the approach based on formal conformance testing to generate behavior trees from a con-
figuration and a test purpose. Image from [5].

To automatically generate concrete scenarios that are guaranteed to be relevant for testing
AV’s behavior in a particular situation (e.g., collision, near miss, etc), we propose to apply
formal methods [5]. More precisely, we here present a conformance testing tool to generate
concrete scenarios from a formal model and a test purpose characterizing the situation. This
tool fits into the framework of scenario abstraction levels defined by the Pegasus project and
PRISSMA delivrable L2.1. The generated concrete scenarios are concrete scenarios as defined,
while representation level of the formal model and the test purpose is between abstract and
logical scenario. It is more abstract than the logical scenario as the behavior of the scenario is
unknown before its concretization, and many different concrete scenarios are generated from
one formal model and one test purpose. It can be less abstract than the abstract scenario as the
test purpose can precisely specify localized events (e.g. collision at a defined location between
two specific actors), however the spatial or temporal localization of such events can be left
undefined.

Formal Model of an Autonomous Vehicle and its Environment The first necessary step
is to devise a formal model of the vehicle and its surrounding environment. We propose to devise
such a model in LNT [28, 29], the main modeling language for concurrent systems supported
by the CADP toolbox [30]. This perception-focused model has been used to generate a large
number of concrete scenarios later executed on CARLA simulator (see Section 4.2.7.2).

The architecture of the LNT model is illustrated in Figure 10. The various elements are
represented as concurrent processes interacting by multiway rendezvous. Hereafter we describe
briefly the main elements, the full model being available in [6].

Obstacles. The obstacles are actors on the map that represent various objects and elements
of the environment. Obstacles can have various sizes (minimum one cell) as they can be pedes-
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Figure 10: Architecture of the AV model in LNT. Image from [6].

trians, cars, or buildings. Obstacles can be static or mobile, the latter ones being able to move
in any direction. Each move consists in traversing a number of cells determined by the obstacle
speed. Some obstacles can hide the view (e.g., a car or a building) and some cannot (e.g., a
pedestrian or a pole).

In a configuration, each obstacle has a list of moves defining its behavior. An obstacle may
also choose not to move or may randomly choose between several possible directions, which
adds nondeterminism to the model and enables the exploration of further scenarios. Obstacle
moves must not lead to collisions (i.e., end on occupied cells of the map) to yield relevant
scenarios. To keep the model size tractable, we enable full random moves only for obstacles
close enough to the car, the random moves of the farther obstacles being restricted to directions
bringing them closer to the car.

Each obstacle is modeled by an instance of the OBSTACLE process. Before attempt-
ing the next obstacle move (at the head of the list), process OBSTACLE obtains, via gate
GRID UPDATE, the current map from the MAP MANAGER process. Based on the map, on
the current obstacle information (position and speed), and on the direction of the next move, the
obstacle determines whether the move is valid, i.e., does not lead to a collision. Then, process
OBSTACLE sends on gate OBSTACLE POSITION the previous position, next position, and
new direction of the obstacle (including the case when the obstacle does not move) to process
MAP MANAGER, in charge of updating the map. When the list of moves is finished, process
OBSTACLE performs an END OBSTACLE action and stops moving, except when it has a
cyclic behaviour, in which case it starts again using its list of moves given initially. The pro-
cess OBSTACLES MANAGER is the parallel composition of all OBSTACLE processes in the
considered configuration.

Map. The map is essentially a grid-based representation of the environment in which the
different actors move. The map is represented as a 2–dimensional array composed of cells with
different values: free when there is no obstacle nor car on the cell, occupied (obstacle) when
the cell is occupied by an obstacle (including all the obstacle information), and car pos when
the cell is occupied by the car (we consider only one car on the map).

The MAP MANAGER process is a central part of the model, in charge of maintaining the
map and of communicating with the other processes to update the position of the actors. The
map is initialized with the positions of static obstacles and the initial positions of mobile obsta-
cles. It is sent on gate GRID UPDATE to the OBSTACLE processes to determine their next
moves, and is also sent on gate GRID CAR (accompanied by the car position) to the process
LIDAR MANAGER to generate the perception grid. If at some moment the position of the car
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Figure 11: Representation of the map with the car and two mobile obstacles. Image from [6].

becomes the same as one of the obstacles, MAP MANAGER performs a COLLISION action
and stops, entailing the termination of the whole scenario. The ENVIRONMENT process is the
parallel composition of MAP MANAGER and OBSTACLES MANAGER.

Car. The CAR process is the parallel composition of the LIDAR MANAGER and CAR MOVE
processes, the latter being in charge of managing the car moves (similarly to process OBSTA-
CLE). The car moves essentially in the same way as the obstacles, except that it can also move
to an occupied cell and thus trigger a COLLISION action. Upon each move of the car, its previ-
ous and current positions are transferred to the MAP MANAGER process to be updated on the
map. If the car has finished its list of moves, it performs an action ARRIVAL, which terminates
the scenario.

LiDAR. The perception grid represents the perception of the car (as computed by the Li-
DAR) up to a certain distance. It is modeled as a 2–dimensional array centered on the car
position. The cells of the perception grid have different values from those of the map: F for free
cells, C for the car position, O for occupied cells, M for cells that were free on the last grid but
became occupied, T for cells occupied by a transparent obstacle, N similar to M but for cells
occupied by transparent obstacles, and U for unknown cells, i.e., those out of the map (if the
grid exceeds the map boundaries) or those hidden from view (behind an opaque obstacle).

The perception grid is maintained by the LIDAR MANAGER process, which sends on gate
LIDAR MAP the new value of the grid and map to process MOVE CAR to compute the next
car moves.

Scheduler and Restrand. Two auxiliary processes optimize the model regarding both its
scalability and its realism when connected to an AD simulator. The SCHEDULER process
introduces additional synchrony in the model to bring it closer to its physical counterpart, by al-
lowing all actor moves between two TICK actions to be performed in parallel, yielding realistic
movements, as opposed to jerky ones induced by equivalent, but less realistic interleavings in
the absence of TICK actions.

The RESTRAND process limits the random moves of the obstacles to keep them in a mean-
ingful neighbourhood of the car. This is useful both for specifying scenarios with relevant
obstacle trajectories (obstacles close enough to be perceived by the LiDAR) and for reducing
the size of the state space.

Scenario module. To easily build various configurations of the LNT model, a scenario
module enables to choose the map, the initial positions of (static and dynamic) obstacles, and
the behaviour of the car.

38



[L1.5] Tests and audit requirements - Final report

Figure 12: Progressing of a test case whose configuration is shown Figure 11.

The LNT model has 1059 lines (excluding the scenario module, the size of which depends on
the configuration) dispatched in eight modules, containing 13 types, 38 functions, seven chan-
nels, and eleven processes. Using CADP, for the map of size 10×10 represented in Figure 11
and two obstacles, we generated (in less than a minute on a standard laptop) the corresponding
LTS with 27,168 states and 50,719 transitions (14,595 states and 28,287 transitions after strong
bisimulation minimization).

This LNT model focuses on a particular component (i.e., the perception), with a grid-based
representation of the geographical map. The advantage of this focus is the possibility to refine
the precision of the moves of the obstacles and the car (e.g., by increasing the resolution of
the map and perception grid) and to fine-tune the model to cover a large number of relevant
AD perception scenarios. For instance, this model enables random trajectories for the obstacles
with different speeds around the car, within an area of parameterized size managed by the
RESTRAND process.

Conformance Testing for Scenarios Concretization The formal model previously pre-
sented is specialized to a given configuration, which includes a scene map and several actors
with their initial positions and constraints on their trajectories. The sequence of actions of all
the actors will be automatically induced by the generated scenarios. In general, each test pur-
pose will yield several scenarios, with guarantees to cover all relevant variations of the behavior
related to the test purpose. These scenarios are then automatically transformed to be used as
input for a driving simulator. To ensure the generation of relevant and critical scenarios, test
purposes (e.g., reaching a collision) and test configurations can be defined based on critical situ-
ations emerging from road accident data [31]. As stated before, these scenarios are equivalent to
concrete scenarios, they describe the environment of the scenario, the actors and their behaviors
(i.e. their trajectories).

In connection with the PRISSMA WP2, we illustrate our approach with CARLA simulator
[32] by providing a method to translate the scenarios into behavior trees. Our approach is
initially evaluated on ten configurations, involving three scene maps (T-crossing, highway, and
X-crossing) and various actors, for which we generated several scenarios featuring collisions
of the AV with other actors, near-misses of such collisions, and arrivals at the destination. For
more details on these results, see [5].

Figure 9 gives an overview of the proposed flow. Its first input is a configuration defining
the scene with its objects and their behavior, from which a formal model and a corresponding
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Figure 13: Overview of the approach proposed in [7] to verify AV perception components. The approach
generates for a formal model all possible AV scenarios (behavior trees) addressing a specific situation
to simulate (test purpose). The generated AV scenarios are then executed on an AV simulator (e.g.,
CARLA) connected to a perception component (e.g., CMCDOT) to obtain execution traces, on which to
perform formal verification and probabilistic reliability analysis.

simulator configuration are derived. The second input is a test purpose, describing the intent all
test cases should focus on. The, we extract a CTG (complete test graph) from the model and a
TP (test purpose) using the TESTOR tool [33]. A TP is an automaton with special “ACCEPT”
labels characterizing the states to be reached by the scenario, and a CTG is an automaton that
contains all transition sequences leading to these states. When computing a CTG, only the
transitions corresponding to a controllable input or observable output of the SUT (system under
test, in our case the CARLA simulator) are necessary. Thus, we can hide—and reduce the
model—all other transitions (e.g., the broadcast of the ground truth map) that are useful for
validation, but irrelevant for test generation. In general, a CTG contains states for which several
inputs can lead to a successful run. Thus, we apply the techniques presented in [10] to extract
a test suite, i.e., a set of TCs (test cases) covering all transitions of the CTG. Each TC is an
automaton interacting with the SUT to drive it towards the accepting states specified by the TP.
Thus, for a given model, several different TCs (and hence, scenarios) can be generated. The TCs
extracted from the model and a TP are represented in an abstract form as automata, and must be
finally transformed into a more concrete form to be used as simulation scenarios. This last step
is dependent on the considered simulator. In the framework of the PRISSMA WP2 (task 2.4),
we present the translation of the generated test cases into behavior trees to drive the CARLA
simulator. The details of this final concretization step and the results obtained in simulation can
be found in the Deliverable 2.6.

Verifying Collision Risk Estimation using Autonomous Driving Scenarios Derived from
a Formal Model This scenario generation method has been used in [7] in combination with
other tools in a more complete AV validation process. An overview of the entire proposed
approach is shown in 13. This work aims to formally validate the perception component of an
AV by verifying formal properties on the collision risk estimated by the perception component.
First, a set of scenarios is generated from several configurations and test purposes covering the
ODD. These scenarios and the AV perception component are simulated and the collision risk
estimation is recorded. Then, formal model checking techniques and statistical analysis are
used on the recorded data to formally validate the collision risk estimation.
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Figure 14: Image from [8]. From a base scenario, the generative model can generate realistic-looking altered
images.

Using generative models to provide calibrated input samples Generating realistic test-
case for a system can be difficult, depending on a given operational domain. Let us take as an
example a perception program that should detect pedestrian under several weather conditions,
and takes images as inputs. Assuming the system (including the data) is developed in France,
we can assume that there may be less test samples under unusual French weather (for instance,
strong snow in plains) than under usual French weather. This lack of data may result in an
insufficient coverage.

Using generative models, it is possible to sample realistic inputs from a learned probability
distributions. Such inputs could then be altered to better suit the operational domain and fill
the missing datas. Following our example, one could generate images from a basic weather
condition and add realistic-looking snow or fog on those. See [34, 8] for an example of such
technique. Also see 14 for an example of such image generation.

4.3 How to ensure minimum coverage?

4.3.1 Exploration of the scenario space

The biggest problem with a scenario approach is ensuring that the scenarios are covered.
In absolute terms, we need to find an optimum (find the necessary and sufficient scenarios) to
ensure that we cover enough without causing the number to explode. In this section, we provide
advice and methods for dealing with coverage problems. At the time of writing, this remains an
open research problem, so it will be more of a guide to good practice and good methods at any
given time.

4.3.2 Metamorphic testing

Testing usually requires an oracle to compare the expected result against the computed result.
Such an oracle may not exist in some cases (lack of specification), or being prohibitively costly
to use. For certain properties however, it is possible to use a technique called Metamorphic
Testing that alleviate the lack of oracle problem.

Let P be a program. Let us denote by x an input for P , and P (x) the result of the computation
of x by P . A metamorphic relation is a necessary condition that links a set of inputs [x1, ..., xn]
and the corresponding outputs [f(x1), ..., f(xn)]. As an example, given a program that computes
the absolute value of a number. Here, one possible metamorphic relation would be that ”The
result of the computation is the same for a number and its negative.” Given the set of input
[1, 2], it is possible to generate derived inputs: [−1,−2]. The output of P on this set of input is
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expected to be to be [|1|, |2|, |−1|, |−2|] = [1, 2, 1, 2]. Note that the metamorphic relation does
not limit to equality of inputs: For the ACAS benchmark, presented in the previous deliverable
of WP1, properties could be of the form ”given a family of inputs that are below a certain angle,
the output of the program will never be to move”.

Metamorphic testing consists on the following steps:

1. compute a set of source inputs [x1, ..., xk] by P

2. generate a set of derived inputs [xk+1, ..., xn] using the metamorphic relation

3. compute P (xi), i ∈ (k + 1, ..., n)

4. checks if [x1, ..., xk, xk+1, ..., xn, P (x1), ..., P (xk), P (xk+1), ..., P (xn)] respects the meta-
morphic relation. If the metamorphic relation does not hold, it means P is not working
as intended

Metamorphic testing relies on well-defined metamorphic relations. Defining those relations
is a manual process; a program P may have an huge set of metamorphic relations, some of
them not relevant for the test campaign goal. Given well-chosen metamorphic relations, the test
campaign can be augmented by a set of derived inputs, leading to an overall better coverage.

Metamorphic testing was successfully used to detect faults in GCC and LLVM, and to in-
dustrial grade software. See [35] for a comprehensive survey on this approach.

There are some work that apply metamorphic testing to autonomous vehicles. For instance,
the authors of [8] use generative models to design new inputs that are supposed to yield the
same outputs; failing this test displayed that the neural network was not behaving properly.
Although not explicitly using metamorphic testing, the authors of [36] defined equivalence
classes between neurons of same activation sign in a linear region; such classes are expected to
yield the same output, hence a metamorphic relation can be constructed from there. Authors
of [37] generate inputs that maximize neuron coverage (given a sample, it is the ratio between
activated neuron on the total number of neuron) from inputs that are not faulty. The insight
here is that a car should keep some behaviours similar under a transformation of the image. For
instance, the car should keep steering at a road angle, even with different weather conditions.
AIMOS, a program developed at CEA and at the time of writing, use on industrial use cases
for Grand Défi IA de Confiance, is a tool specialised on metamorphic transformation applied to
neural networks.

4.3.3 Coverage testing

Metrics for coverage testing applied to neural networks

Testing classical software usually relies on a family of metric, called ”coverage metrics”.
To briefly summarise, coverage is a measurement of how much a given test scenario explores
the behaviour of the program. It can for instance study how many branches are taken (branch
coverage).

An analogy of this metric can be found in neuron coverage. Proposed several times in the
literature with slight variations [38], this metric can be seen as an analog of branch coverage.
Let f be a neural network with N neurons. Here, a neuron ni is to be understood as a function
ni : R 7→ R+∗. When the output of ni is strictly above 0, ni is active. When the output of ni

is equal to 0, ni is inactive. Let T an test set comprised of samples x for f . Neuron coverage
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consist on calculating the amount of active neurons over the total number of neurons for this
input:

|{ni > 0}, f(x),∀x ∈ T |
N

Techniques such as DeepXPlore [38], DeepTest [37] or DeepConcolic [39] leverage this defini-
tion to produce test cases that aim to maximise neuron coverage.

There are several issues with this metric however. In classical coverage testing setting, one
would like to maximise the coverage of both the functional and the error management parts.
However, contrary to classical programs, neural networks do not have clearly defined failure
mode, such as dedicated return values (exceptions or error codes). As such, there is a potentially
very high overlap between a correct execution and a faulty one. Second, test case generation
tools relying on neuron coverage usually provide a high amount of faulty inputs [34], leading
to an increased cost. Since neuron coverage does not provide any oracle whether the input is
correct or not, it is up to the human operating the test to triage the input, leading to increased
cost with little benefits. Authors of [34] propose to add a generative model to generate only
valid test cases, reducing the overall human cost.

1. fraction of activated neural networks [34]

2. this paper [40]

4.3.4 Border analysis

The exploration and caracterization of failing scenarios is an important task to ensure model
safety in operating conditions. However, a trade-off must be performed between the number
of explored scenarios (which ensures precision) and the computational complexity. Indeed, a
coarse discretization of the parameters space may cause some critical cases to go undetected
if their parameters fall between the values of the discretization grid. On the other hand, if the
discretization step is too low, the computation power required to browse the scenario space
becomes unsustainable.

4.3.4.1 Building a ”map” of the scenario space

For each use case, thousands of scenarios are generated by variation of input parameters.
Each parameter has a finite domain of evolution, and the number of parameters defines the
dimension of the configuration space. For safe operation, it is necessary that the domain of
functioning and the domain of failure are determined, and the behavior of the model must be
predictable when conditions are getting close to failure (border cases) In the work [9], the author
presents a simulation-based method for characterizing the failure domain. The algorithm is the
following:

• A criterion of failure, or NOGOOD, is defined (for example, in the use-case where an
autonomous vehicle must follow a vehicle ahead of it, the failure criterion is the safety
time gap between the vehicles)

• An initial “Find One Failure” algorithm tests random scenarios with the goal to find one
failure far from the other scenarios. It is an optimization algorithm on failing scenarios

• All outputs from this algorithm are stored and with enough iterations, a “map” of the
use-case configuration space is produced.
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Figure 15: Algorithm used to research all failures in the configuration space. Diagram taken from [9]
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4.3.4.2 Caracterising border cases

After this algorithm outputs a map of the use-case space of chosen density, a subset of the
global space of scenarios is defined as ”border cases”. The border case scenarios are those that
have both GOOD and NOGOOD neighbour scenarios. A neighbour scenario is one where all
parameters differ by at most one step, for example for a point on a 2D grid it would be the 9
direct and diagonal neighbours. The number of border cases is large (almost 1/3 of all scenarios
in the provided example) because of the large dimension of the configuration space.

The author then proposes to use specific ”border models” which predict whether a given
scenario is on the border while limiting the number of calculations. First, a Neural Network
model is proposed, with learning on a balanced subset of the scenarii (same number of border
and non-border cases). However, although different dataset sizes and optimization approaches
were tried, it was found that the robustness of the learning process was insufficient. Further-
more, as the NN approach lacks in explainability, the author proposes a Mixed Integer Linear
Programming (MILP) approach.

The MILP approach consists in calculating an exact mathematical description of the border,
in the form of a set of equations. The computation of the model is costly, but its application
is near immediate. The computation of the model can be accelerated by defining a margin of
errors (number of GOOD scenarii that can be classified as NOGOOD). The equations used are
either affine (defining a hyperplane in the configuration space) or quadratic (defining a quadratic
manifold). The MILP classification is applied as follows:

• each equation f1(X) ≤ 0 divides the configuration space in 2, such that one half of the
space contains only GOOD scenarios

• For any scenario X , X is NOGOOD if fi(X) > 0 ∀i

The function f used can be affine or quadratic and takes as parameters the coordinates of the
scenario in the configuration space.

When the NOGOOD scenarios form a single cluster, the MILP classification algorithm is
simply recursive:

• Search for an equation that eliminates at least one GOOD scenario

• Remove from set all GOOD scenarios classified by this equation

• Restart with the new reduced set, until no equation can be found.

.
When the shape of NOGOOD subset is more complex, such as several separated clusters, the

classification is adapted by splitting the set into clusters and applying the recursive algorithm to
each cluster, as illustrated by figure 16.

This work proves that it is possible to build scenario classifiers based on a sampling of
the classification space. Although the initial computation cost is high, these models are later
relatively easy to implement, even by industry standards.

4.3.5 Model-Based Testing and Coverage

MBT (Model-Based Testing) [41, 42] encompasses the range of methods that exploit a model
of the SUT (System Under Test) to automate testing. MBT enables to keep tests in close cor-
respondence with the SUT’s requirements and reduces the cost of the test activity, at the price
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Figure 16: Step-by-step progress of MILP with cluster separation. Diagram taken from [9]
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of developing a model of the SUT. Conformance testing is a form of black-box MBT seeking
to establish that an SUT behaves according to a model, which serves as an oracle. This ap-
proach relies on the hypothesis that the behaviour of the model and the SUT can be represented
as an IOLTS (Input-Output Labelled Transition System) [43], which is a convenient semantic
representation for high-level formal languages.

A popular conformance relation for IOLTSs is ioco [44], which serves as basis for on-the-fly
test case generation guided by test purposes, as implemented in the TGV [43] and TESTOR [33]
tools. This approach allows the tester to build a test plan, i.e., set of test purposes at a similar
abstraction level as the system requirements. The test plan must then be transformed into a test
suite, i.e., a set of concrete, deterministic test cases to be executed on an SUT. Each test purpose
directs the test case extraction and enables to handle large models by ignoring those parts of
the model irrelevant to the considered test purpose. The tester is confronted with the questions
of when to stop the testing process (by devising no more test purposes) and how thoroughly
the SUT has been tested. These well-known questions in the testing domain are classically
addressed using coverage criteria [45] measuring the degree to which the internal structure of
an SUT was exercised during the testing process. For the ioco-based conformance testing, a
suitable coverage criterion is transition coverage, which consists of covering each transition in
the IOLTS.

compute counterex.
to TPCTG
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to cover
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equivalent?
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Figure 17: Overview of the transition coverage approach (image from [10])

An approach was proposed recently [10] to automatically generate a set of test purposes
with their corresponding CTGs (Complete Test Graphs), each of which contains all necessary
information to drive a (conformant) SUT towards the corresponding test purpose (if possible).
The approach, illustrated on Figure 17, is iterative: in each iteration, a new test purpose is
derived from a counterexample illustrating a not yet covered transition of the model. It is also
possible to start from an existing, non-trivial (i.e., not empty) test plan, completing it to cover
all transitions, as well as detecting redundant test purposes that do not increase the coverage.
Because a CTG is not necessarily controllable (e.g., there might be a non-deterministic choice
between inputs to be sent to the SUT), a deterministic test suite covering all its transitions is
further automatically extracted from each CTG. The union of all such generated test suites thus
ensures transition coverage of the IOLTS model. This approach was implemented on top of
TESTOR6 and the CADP toolbox7 [30], and experimented on several distributed systems.

4.3.6 A proposal for a validation protocol

1. definition of the scenario space is necessary

6http://convecs.inria.fr/software/testor
7http://cadp.inria.fr
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2. scenario generation test techniques should be employed

(a) model-based scenario generation

(b) metamorphic testing

3. coverage testing metrics have limited usefulness

4.4 Choice of metrics, KPIs and criteria

4.4.1 Safety metrics

Several metrics are used to assume the safety of the autonomous vehicle. The standard one
is the one proposed by MobilEye : the “Responsibility-Sensitive Safety (RSS)8 proposal [46]
and its NHSTA implementation [47] complement the classic use of ”Time-to-X” metrics (Time
to Brake, Time to Collision [48], [49], etc.) and the avoidance metrics ([50]) .
The most natural approach is to measure the time remaining before the occurrence of the dan-
gerous event in order to avoid it. This approach has produced a family of metrics generally
referred to as Time To Event or as it is named as Time-to-X” (TTX) or temporal proximal indi-
cators. The TTX is a natural measure that makes it possible to decide the most suitable action to
avoid the danger given the remaining time. It is also usually to illustrate the different situations
before the dangerous event appears on the time axis as illustrated in the figure 18, taken from
the article [11]. In this figure we see that the situations evolve from normal driving to an un-
avoidable accident just before the collision as well as the different assistance systems adapted
at the considered moment. The TTX metrics allow us or to assess the effectiveness of an ADAS
system in avoiding accidents or driving difficulties. The more the TTX metrics are large the
more efficient and the more comfortable is the driving and in the figure 18, this is illustrated
with the colors green to red.

Figure 18: The different risk levels and situation intervals. Updated modeling from ([11])

8https://static.mobileye.com/website/corporate/rss/rss_on_nhtsa.pdf
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At a minimum, any evaluation should take into account such metrics. We will first give a
quick overview of these metrics before going into more detail on how to use them and in which
cases.

4.4.1.1 Inter-Vehicle Time (IV T )

This metric is simply the calculation of the inter-vehicular time between the EGO vehicle
and the primary target, i.e. the time required for the EGO vehicle to travel the distance to the
target at the current constant speed. Let v(t) be the speed of the EGO vehicle and d(t) the
distance to the target then the mathematical formula is :

IV T (t) =
d(t)

v(t)
(1)

4.4.1.2 Time to Brake (TTB)

Time after which a braking maneuver has to be started to prevent the collision. If the TTB is
smaller than 0, a collision can not be avoided by braking [51].

4.4.1.3 Time to Steer (TTS)

Time after which an evasive maneuver has to be started to prevent the collision. If the TTS
is smaller than 0, a collision can not be avoided by steering [51].

4.4.1.4 Time to collision advanced (TTCa)

The Time to Collision (TTC) has been studied intensively, and is based on a microscopic 1D
vehicle trajectory model for longitudinal collisions of two vehicles. This limitation is important
and the improvements made allowing to calculate both longitudinal and lateral collisions on a
2D plane is proposed in this TTCa metric by as it is proposed in [49],[11] or [52]. This metric
is the calculation of the time to collision between the EGO vehicle and a target. This extension
of the TTC collision time is used in Mobileye systems [48].

Let (x(t), y(t)) the EGO vehicle position vector, (vx(t), vy(t)) the EGO vehicle speed vector,
(γx(t), γy(t)) the EGO vehicle acceleration vector,

(
xT (t), yT (t)

)
the target position vector,(

vTx (t), v
T
y (t)

)
the velocity vector of the target and

(
γT
x (t), γ

T
y (t)

)
the acceleration vector of the

target, we try to estimate X which corresponds to the collision time, noted , in the following
second order equation [49] :

dij + ḋijX +
1

2
d̈ijX

2 = 0 (2)

we can deduce a Distance to Time to Collision advanced (dTTCa) as the calculation of the
pre-collision distance between the EGO vehicle and a target and thus the distance to the TTCa.
The formulation is therefore

dTTCa(t) = TTCa(t)× vx(t)
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4.4.1.5 Lateral Avoidance metrics

Here we model indicators that highlight the instantaneous lateral acceleration ACClat or the
instantaneous deceleration required to avoid a vehicle in its lane DCClong.

The lateral avoidance acceleration can be written as follow ([50]):

ACClat(t) = γT
y (t)−

2

TTCa(t)2
(−
(
yT (t)− y(t)

)
±

(
W sin (δ(t)) +W T sin

(
δT (t)

))
2

−
(
vTy (t)− vy(t)

)
TTCa(t)) (3)

With W the width of the EGO vehicle and W T the width of prior target

4.4.1.6 Longitudinal Avoidance metrics

The instantaneous deceleration required to avoid a vehicle in its lane can be written:

DCClong(t) = min

(
γT
x (t)−

(
vTx (t)− vx(t)

)2
2× d(t)

, 0

)
(4)

4.4.1.7 Dealing with the uncertainty

The indicators presented below are mainly based on deterministic vehicle and driving mod-
els. However, on the road, the the detected targets IA algorithms are subject to uncertainties
on the classification and the positioning of dynamic elements over time. This uncertainty may
results from the physical possibilities due to the degrees of freedom and from the behavior of
the road users or from the perception perturbations due to environment factors or to the limits
of the sensors. We can present here two interesting approaches that assess the uncertainty us-
ing probability modelling or using mechanical modelling such as friction circle, as known as
Kamm’s circle that models the area where the dynamic object should be [53]. The probabilistic
approaches can be illustrated by the method proposed in [54] Lambert et al. The goal is to
assess collision using the distance of a vehicle to an object thanks to a provided Gaussian nor-
malised function on multiple-dimensional space (x, y, V ). Besides, a definition of the collision
risk is presented as the product of the collision probability function and the cost of collision, ap-
proximated as the Energy Equivalent Speed(EES) [55]: costcoll(V ) = EES(V ). The collision
probability Pcoll used is a multivariate distribution on 2D real space:

Pcoll =

∫
D

Pv(xv, yv, θv)Po(xo, yo, θo)dxvdyvdθvdxodyodθo

Hence, the risk of collision Riskcoll(v) is computed with: Riskcoll = Pcoll · costcoll(v) and
the TTC is computed for the predicted position where the the risk of probability of collision is
the highest. In the figure 19, we show an illustration of a Ego-vehicle detecting an obstacle and
the probability of collision Pcoll is computed.
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Figure 19: The probabilities of the Ego-vehicle moving in straight line towards the obstacle and the probability of
collision.

In more recent works, [56] proposed an advanced collision risk modelling for autonomous
vehicles, extended from an interaction-aware motion modelling based on Dynamic Bayesian
Networks (DBN). They took in consideration a more global view of the current situation (net-
work and traffic level) in order to estimate a “network level collision prediction”. This predic-
tion capacity allows to have a risk anticipation which clearly improves the risk assessment in
complex and large traffic scenarios. Later, modelling relying on octagonal representation of the
surrounding space is proposed by [57] as an analytic approach to assess the collision risk with
obstacles. They used two probabilistic methods to calculate the risk: the Collision State Prob-
ability (CSP) in real-time and the Collision Event Probability (CEP) density. They developed
the octagon concept which models the trace of the obstacle centroids when it moves around the
ego-vehicle (represented by a rectangular box). This concept provides a spatial multidimen-
sional safety indicator.
The mechanical approach is using the so-called Kamm’s circle [53] that predict the area where
the vehicle or the obstacle should be when the size, the speed and the acceleration of the vehicle
and the obstacle are provided by sensors. The position of the dynamic obstacles (xo(t), yo(t)
and of the vehicles (xv(t), yv(t) are modelled by a very simple linear model when the speeds vo
and vv are given:

x·(t) = v·,xt+ x·(0)
y·(t) = v·,yt+ y·(0)

(5)

where · is o for obstacle or v for vehicle. The dynamic objects’ position are known with uncer-
tainty and it is modelled with circle centred in (x·(t), y·(t) with radius r·(t) = 1

2
a·t

2. The radius
is increasing with t as fast as t2 modelling the increasing uncertainty over time. The vehicle and
the obstacle size are also represented by circles that contain these objects with the radii ρv and
ρo. The collision occurs when rv + ρv + ro + ρo ≥

√
(xv − xo)2 + (yv − yo)2 and the shortest

time for the vehicle to hit the obstacle is the metric so-called Worst-Time-To-Collision (WTTC).

51



[L1.5] Tests and audit requirements - Final report

The article of Wachenfeld et al. [53] shows that the WTTC is a better metric to identify situ-
ations that are actually dangerous and reduce the number of situations that are not critical in
order to focus on the dangerous ones. In our opinion, the probabilistic approaches that lead to
the estimation of risk can also be used for the same purpose. However, the comparison between
the two approaches need to be studied.

4.4.2 Robustness: uncertainty and out-of-distribution, active learning, calibration

Over the past decade, significant progress has been made in artificial intelligence (AI), par-
ticularly in fields such as autonomy and robotics. AI has also shown promise in other high-risk
areas like medicine and healthcare. However, despite these advancements, there remains a
noticeable gap between the innovation of these technologies and their practical application in
everyday life. Many of these AI technologies were developed several years ago, yet they are not
widely accessible in our daily lives. The reason why we can’t easily buy self-driving cars or the
absence of robots assisting in surgical procedures is primarily due to the challenges and failures
AI has encountered. These failures have been observed in various safety-critical domains, rang-
ing from accidents involving autonomous vehicles to healthcare errors. Addressing these issues
is crucial before deploying AI in critical domains. To do so, we must focus on innovating in the
fields of safe and robust artificial intelligence.

Two fundamental issues inhibit AI’s deployment into high-risk domains. The first involves
hidden biases present in training data. Bias arises when machine learning models perform better
for specific groups over others. Algorithms trained on skewed datasets may generate solutions
that are not universally effective in real-world situations. The second problem revolves around
unmitigated and uncommunicated uncertainty. This happens when AI models don’t know when
they can or can’t be trusted. Indeed, machine learning models can behave erratically when
presented with data dissimilar to the training data, or what is can referred to as non-nominal
data. This uncertainty can, for instance, lead to self-driving cars continuing to operate even
when their confidence in their environment is less than 100%, rather than surrendering control
to human operators. This element of uncertainty needs to be addressed to ensure safe and
reliable AI deployment.

The EASA figure 20 illustrates the impact of different data types on AI’s operational sys-
tem. The green zone indicates nominal operations within the in-distribution data, where the
system’s responses are as trained and expected. The yellow zone represents in-distribution but
non-nominal conditions, where the data is unusual but still within the range of the AI system’s
experience, and the system continues to respond accurately. The orange zone marks the bound-
ary of out-of-distribution data, indicating increasing severity and potential for error, but not
yet critical. In contrast, the red zone highlights where the system encounters severe out-of-
distribution data, leading to potential system failure.
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Figure 20: Illustration of the work domains as reported in [12]. From central green bar to side yellow/orange/red
bars, the nominal domain shifts and the severity increases in parallel

Our aim is to build AI systems with an introspective understanding of their knowledge
boundaries—AI systems that know what they don’t know. Achieving this would mean cre-
ating AI that is adept at maintaining high predictive performance while also being capable of
identifying and reacting to out-of-distribution data. We need a robustness model that clearly de-
marcates in-distribution data from out-of-distribution scenarios. This demarcation is critical so
the AI system can proactively signal when it is unable to make reliable predictions and should
therefore transfer control to a human operator. In essence, an AI system’s reliability in high-risk
environments is contingent on its robustness and its capacity for recognizing its own operational
limits.

A proposal for a validation protocol

The evaluation and validation protocol (figure 22) that we propose should allow to have clear
and precise answers on the following questions:

1. How trustworthy are the uncertainty estimates of our model under perturbations ?

2. How robust are the prediction of our model under perturbations?

3. How do uncertainty and accuracy of different methods co-vary under perturbations

Concretely, we would like the model predictions to become more uncertain with increased data
distribution shift, as far as shift degrades accuracy. This is usually called ”covariate shift”.
Hereafter, we start by selecting a subset of perturbations, following state of the art results,
allowing model evaluation and validation with reduced cost. Next we explain decision process.

1. Data perturbations

(a) Data-set shift: We propose the following shift for autonomous driving system:

• Time of day / Lighting

• Geographical location (City vs suburban)

• Changing conditions (Weather / Construction)

They may be simulated using domain adaptation technique [58] that has emerged
as a new learning technique to address the lack of massive amounts of labeled data
by using labeled data in one or more relevant source domains to execute new tasks
in a target domain. In our context, we propose the following validation condition.
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Figure 21: Examples domain adaptation technique for autonomous driving system

(b) Adversarial perturbations

(c) General corruptions

(d) OOD samples

2. Robustness validation : This refers to the ability of AI algorithms to function effectively
in the face of unexpected or adverse situations. In general, there are two different ap-
proaches one can take to evaluate the robustness of a neural network: attempt to prove a
lower bound, or construct attacks that demonstrate an upper bound. The former approach,
while sound, is substantially more difficult to implement in practice, and all attempts have
required approximations. On the other hand, attacks used in the latter approach are not
sufficiently strong and fail often, the upper bound may not be useful. Moreover, there
exist different types of adversarial attacks and defenses for machine learning algorithms
which makes assessing the robustness of an algorithm a laborious task. thus, there is
an intrinsic bias in these adversarial attacks and defenses to make to further complicate
matters. For instance an evaluation process must avoid a model dependence behavior,
insufficient evaluation, a perturbation dependent results. This requires a model agnos-
tic adversarial robustness assessment. In [59], authors have recently observed that dual
synchronised attacks based on L0 and L∞ distance-norms allow a good robustness assess-
ment on several neural network architectures. Moreover, their results suggest that L1 and
L2 metrics alone are not sufficient to avoid spurious adversarial samples and it is better
to combine dual norms (1 and ∞) to construct an upper bound on the robustness of the
model.

3. Uncertainty validation : Naturally, we expect the accuracy of a model to degrade as it
predicts on increasingly shifted data, and ideally this reduction in accuracy would coin-
cide with increased forecaster entropy. A model that was well-calibrated on the training
and validation distributions would ideally remain so on shifted data. On the completely
non-nominal data, one would expect the predictive distributions to be of high entropy.
Essentially, we would like the predictions to indicate that a model “knows what it does
not know” due to the inputs straying away from the training data distribution.

54



[L1.5] Tests and audit requirements - Final report

Figure 22: A proposal for a validation protocol

In the following we will delve deeper into various aspects of the proposed protocol. First
we will delve into the impediments to AI deployment in high-risk domains : Bias and OOD.
We’ll then explore the concept of AI robustness. Next, we will examine the quantification of
uncertainty, crucial for comprehending AI’s decision-making process and assessing its reliabil-
ity. Finally, we will consider the robustness of uncertainty quantification, crucial to ensure that
decisions made by AI are not only reliable but also precise.

4.4.2.1 Bias

Recent research has brought to light the vulnerabilities of AI-based systems to bias, a phe-
nomenon that can be quantified and mathematically defined. Two main types of bias have been
identified: sampling bias and selection bias, both of which can occur during different stages of
the AI lifecycle.

Sampling bias occurs when certain regions of our input data distribution are over-sampled,
while others are under-sampled. This can lead to skewed representations of various groups in
the data, affecting the fairness and generalization of the AI model. On the other hand, selection
bias refers to the biases introduced during the data collection and preparation process, which
may not accurately represent the real-world scenarios and contribute to biased outcomes.

Biases can be further propagated throughout the AI model’s training cycles and persist even
after the model is deployed in the real world. Distribution shifts can lead to unexpected biases
emerging during deployment. It’s crucial to continuously monitor and address these biases to
ensure fairness and accuracy in the AI system’s predictions for all users.

One crucial aspect of bias mitigation is evaluating the model’s performance accurately.
While a model may demonstrate high accuracy overall, it might not perform as well on spe-
cific subgroups of the population. If we solely rely on evaluation metrics that do not include
testing on subgroups, we risk facing evaluation bias, which can perpetuate disparities and fur-
ther marginalize certain user groups.

To create more reliable and fair AI-based systems, it’s essential to address bias at each stage
of the AI lifecycle and incorporate thorough evaluation processes that consider the performance
across diverse subgroups.
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4.4.2.2 Out-of-Distribution (OOD)

Machine learning models are typically trained with the assumption of a closed-world sce-
nario, where the test data, denoted as ptest(X, y), is drawn independently and identically dis-
tributed (i.i.d.) from the same distribution as the training data, denoted as ptrain(X, y). However,
in real-world scenarios, when these models are deployed, they might encounter test samples that
come from a different distribution.

ptest(X, y) ̸= ptrain(X, y)

In the presence of such a divergence between the training and operational distributions, it is
essential for the system to be able to detect and raise an alarm. The reason behind this is that the
performance of the machine learning model may no longer match what was initially measured
during the training phase. This could lead to unexpected outcomes and potentially harmful
consequences in real-world applications. It has been observed in [60] that neural networks do
not generalize under distribution shift on Imagenet data and that accuracy drops with increasing
shift.

The distributional shifts between training and operational phases can be caused by several
factors, which include:

• Semantic Shift: New classes may manifest during the testing phase that were not present
during training. The model needs to be able to handle these new classes gracefully.

• Covariate Shift: In this case, the distribution of input data p(x) changes, while the condi-
tional distribution of labels given inputs p(y|x) remains fixed. Covariate shift can occur
due to adversarial attacks, where data samples are modified intentionally to cause the ma-
chine learning model to fail with high confidence. It can also happen due to corrupted
data, where unwanted changes occur in the data.

• Label Shift:

This occurs when the distribution of labels,p(y), changes, while the conditional distribu-
tion of the input given the label, p(x|y), stays the same. It commonly takes place when
the data is inaccurately labeled, leading to an unexpected label distribution.

In the following, we will explore the concept of covariate shift in more detail, focusing on
two specific cases: adversarial attacks and corrupted data

Covariate Shift: Adversarial attack. For a long time, the most universal way to measure
the quality of a trained learning model has been the empirical error on testing samples which
has been the sole focus of researchers. Around 2013 a remarkable paper by Szegedy et al. [61]
warns against intriguing behavior of some classification models. In fact, despite their excessive
accuracy, they show a worrying instability. This was illustrated by the ability to make them
predict false results and with probabilities close to 1. Since then, the greatest challenge for
researchers has become the tracking of this kind of disturbance that drives the models crazy and
especially how to vaccinate AI models depths of these attacks. In this section we recall the great
episodes in this research and which led to more robust models, but also to new challenges.

The main results from the Szegedy work [61] are the following counterintuitive properties
of neural networks :
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Figure 23: Principle of adversarial perturbation: Find adversarial examples near the decision boundary

1. . The existence of adversarial examples suggests that being able to explain the training
data or even being able to correctly label the test data does not imply that our models truly
understand the tasks we have asked them to perform. Instead, their linear responses are
overly confident at points that do not occur in the data distribution, and these confident
predictions are often highly incorrect.

2. The semantic information in the high layers of neural networks are contained in the space
(multidimensional), rather than the individual units. This implies the absence of local
generalization at unit level and so local imperceptible deviations from a data point in the
input space can cause the neural network to change its prediction.

3. Deep neural networks learn input-output mappings are fairly discontinuous to a signifi-
cant extend. Thus, it is possible to cause the network to misclassify an image by applying
a certain imperceptible perturbation, which is found by maximizing the network’s predic-
tion error.

4. The specific nature of these perturbations is not a random artifact of learning: the same
perturbation can cause a different network, that was trained on a different subset of the
dataset, to misclassify the same input.

Since these interesting observations, much work has turned to researching increasingly shocking
examples to illustrate this failure. These techniques are called adversarial attack: one type of
attack is to attempt to perturb a data point x0 to another point x1 in the same space such that x1

belongs to certain target adversarial class. For example if x0 is a feature vector of a car image,
by adversarial attack we meant to create another feature vector x1 which will be classifier as
a person (or another class specified by the attacker). In some scenarios, the goal may not be
to push initial input to a specific target class, but just push it away from its original class or
understand how the model works. Since 2013, the main adversarial attack families may be
resumed as follows.

1. On basis of model : On basis of Threat model

(a) White Box Attacks: attacker has access to the model’s parameters

(b) Black Box Attacks: attacker has no access to the model’s parameters

2. On basis of Objective

(a) aim is to enforce the model to misclassify adversarial inputs
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(b) aim is to get the image classified as a specific target class different from the true
class

(c) aim is to reverse Engineering the model in order to either reconstruct the model or
extract the data that it was trained on

3. On basis of Distance metrics

(a) L0 attacks: minimize the total number of different input features between clean and
adversarial inputs

(b) L2 attacks: minimize the square difference between input features of clean and
adversarial inputs

(c) L∞ attacks: minimize the maximum input feature difference between clean and
adversarial inputs

Since 2013, a large number of adversarial attacks have been introduced. These attacks have
become a significant research topic, as evidenced by the increasing number of articles published
each year in this field. This research has led to the development of more sophisticated attack
methods, such as APGD [62], which are faster and more effective than previous approaches.

Figure 24: Cumulative number of adversarial example papers

We present in the following, in chronological order, the main approaches that have improved
the state of the art by further reducing accuracies while simplifying and accelerating the gener-
ation of examples.

1. White-box attacks

• Szegedy formulation 2013 [61]

• Fast gradient sign method: FGSM: Goodfellow et al. 2014 [63]

• DeepFool: Moosavi-Dezfooli et al. 2015 [64])
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• Jacobian-based saliency map attack: JSMA, Papernot et al. 2016 [65]

• Universal adversarial perturbations, Moosavi-Dezfooli et al. 2017, [66]

• One Pixel Attack for Fooling Deep Neural Networks, Su et al. 2017 [67]

2. Black-box attacks

• Practical Black-Box Attacks, Papernot et al.2017 [68]

• ZOO: Zeroth Order Optimization Based Black-box Attacks, Chen et al.2017, [69]

Adversarial attacks extend beyond digital manipulations and can be executed through physi-
cal perturbations. This method involves the use of tangible, external objects - commonly patches
or stickers - to cause disruptions. These tangible attacks are particularly alarming as they can be
executed in the real world, posing a direct threat to the reliability and robustness of AI systems
operating in physical environments.

Physical perturbation attacks leverage the vulnerability of machine learning models to im-
perceptible alterations in their input data. By strategically placing patches or stickers on objects
or surfaces, adversaries can exploit these vulnerabilities and deceive AI systems into misclassi-
fying or misinterpreting the environment. These physical perturbations are carefully designed
to appear benign to the human eye but have a significant impact on the AI’s decision-making
process. This exploitation of machine perception vulnerabilities can impact a broad range of
applications, from facial recognition and surveillance systems to self-driving vehicles.

To execute such attacks, attackers usually employ sophisticated optimization algorithms to
find the optimal location and size of the patches or stickers. The goal is to maximize the impact
on the model’s output while ensuring that the changes are minimal enough to avoid detection
by human observers. One critical implication of physical adversarial attacks is the potential for
real-world consequences. For example, an adversarially perturbed stop sign could be misclas-
sified by an autonomous vehicle as a speed limit sign, leading to hazardous traffic incidents

Figure 25: Stickers on stop signs [13].

In regression tasks, unlike classification tasks, there are no natural margins for decision
boundaries, which makes adversarial learning more challenging. Defining adversarial attacks,
evaluating their success, and establishing appropriate evaluation metrics pose difficulties in the
regression setting. Despite the growing number of works on adversarial attack generation, re-
search specifically focusing on regression tasks remains relatively limited.

One notable contribution by Tong et al. (2018) explored adversarial attacks in the context
of an ensemble of multiple learners. They investigated the interactions between these linear
learners and an attacker in the regression setting, modeling it as a Multi-Learner Stackelberg

59



[L1.5] Tests and audit requirements - Final report

Game (MLSG). However, the use of linear models in this work limits its ability to address the
larger class of non-linear models commonly encountered in real-world scenarios. On the other
hand, Ghafouri et al. (2018) addressed an important problem concerning the selection of op-
timal thresholds for each sensor against adversaries in regression tasks within cyber-physical
systems. This work sheds light on practical aspects of adversarial defenses in the context of
regression tasks. In a different context, Deng et al. (2020) introduced the concept of adversarial
threshold, which relates to the allowable deviation between the original prediction and the pre-
diction of an adversarial example. This concept is particularly relevant in the context of driving
models, where an acceptable error range must be defined to ensure safety and stability.

Covariate Shift: Corrupted data. Corrupted data can arise due to various non-malicious
reasons such as errors in data collection, sensor noise, data transmission issues, or natural vari-
ations in the data over time. These alterations can introduce noise or outliers, disrupting the
normal distribution of the data. As a result, the AI system may encounter unseen or unexpected
patterns during testing, leading to decreased performance and inaccurate predictions.

Figure 26: 15 types of algorithmically generated corruptions from noise, blur, weather, and digital categories

The first common corruption is Gaussian noise. This corruption can appear in low-lighting
conditions. Shot noise, also called Poisson noise, is electronic noise caused by the discrete
nature of light itself. Impulse noise is a color analogue of salt-and-pepper noise and can be
caused by bit errors. Defocus blur occurs when an image is out of focus. Frosted Glass Blur
appears with “frosted glass” windows or panels. Motion blur appears when a camera is moving
quickly. Zoom blur occurs when a camera moves toward an object rapidly. Snow is a visually
obstructive form of precipitation. Frost forms when lenses or windows are coated with ice
crystals. Fog shrouds objects and is rendered with the diamond-square algorithm. Brightness
varies with daylight intensity. Contrast can be high or low depending on lighting conditions
and the photographed object’s color. Elastic transformations stretch or contract small image
regions. Pixelation occurs when up-sampling a low-resolution image. JPEG is a lossy image
compression format that increases image pixelation and introduces artifacts. Each corruption
type may be tested with depth due to its five severity levels, and this broad range of corruptions
allows to test model corruption robustness with breadth. Moreover, one adversarial attack is to
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modify in purpose several bits or adding an imperceptibly small vector in order to misclassify
adversarial inputs.

To ensure the robustness and reliability of machine learning models in an open-world setting,
it is crucial to develop techniques that can identify and handle out-of-distribution samples ef-
fectively, as well as detect and adapt to distributional shifts that may occur during deployment.
This will enable the models to perform consistently and safely in real-world applications

4.4.2.3 Debiasing

There are various debiasing approaches to address biases that may be present in the data.
One effective approach to mitigate class imbalance is sample re-weighting. Instead of uniformly
sampling from the dataset, we sample at a rate inversely proportional to the incidence of each
class. By doing so, we give higher importance to underrepresented classes, allowing the model
to focus more on learning patterns from these scarce samples, which can improve its ability to
recognize and predict minority classes accurately.

Another technique to address class imbalance is loss re-weighting. Rather than treating all
mistakes made by the model equally, we assign different weights to samples based on their class
representation. Samples from underrepresented classes are assigned higher weights, making
their misclassifications contribute more significantly to the total loss function. This enables
the model to prioritize learning from these samples and better adjust its decision boundaries to
account for the minority classes’ characteristics.

Lastly, batch selection can be employed to tackle class imbalance. In this approach, we
randomly choose samples from each class to form a batch, ensuring that every batch contains
an equal number of data points from each class. This balanced representation in each batch
helps the model receive a fair and representative distribution of data during training, reducing
the risk of the majority class dominating the learning process.

Even in cases where the classes are completely balanced, there can still be other forms of
bias present. While we’ve successfully addressed the issue of underrepresented classes, we must
now focus on the problem of variability within the same class, particularly when there is feature
imbalance. One approach to mitigate this bias is to employ a de-biasing algorithm that utilizes
the latent features learned by a variational auto-encoder (VAE) to perform under-sampling and
over-sampling within our dataset.

To begin, we need to train a VAE using the provided dataset to learn the underlying latent
features. Once we have successfully captured the latent structure, we can use it to calculate a
distribution of the inputs across each latent variable. This distribution helps us identify areas
within our data where the density is high and others where it is sparse.

By having this distribution information, we can now make informed adjustments to our
dataset. Specifically, we can under-sample samples belonging to the denser areas of the dis-
tribution and over-sample data points from the sparser regions. This process ensures a more
balanced representation of the data while preserving the overall integrity of the information
present in the latent features

4.4.2.4 Robustness

Before discussing robustness in AI models, let’s first distinguish between accuracy and ro-
bustness. Accuracy in classification refers to the fraction of inputs that the model correctly
classifies. Given a dataset, accuracy measures the percentage of observations for which the
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model correctly identifies the class. In contrast, accuracy in regression refers to the closeness
of the model’s predicted values to the actual target values for the given dataset.

Robustness, on the other hand, quantifies the model’s ability to maintain its accuracy or pre-
dictive accuracy when the input data is slightly modified. More precisely, robustness measures
the fraction of input points x for which the predicted class (in classification) or predicted value
(in regression) is close to the actual class or value, respectively, for all input points y belong-
ing to a ball of radius ε around x. This notion of robustness depends on the norm Lp and the
intensity of perturbation ε.

It’s important to note that in both classification and regression, adversarial examples have
revealed that models with high accuracy can have a zero robustness score. Adversarial examples
are carefully crafted inputs with imperceptible modifications that lead the model to misclassify
(in classification) or make inaccurate predictions (in regression).

To mitigate adversarial attacks, various defense methods have recently been proposed. These
can be broadly classified into two categories: (a) Reactive defenses that modify the inputs during
testing time, using image transformations to counter the effect of adversarial perturbation, and
(b) Proactive defenses that alter the underlying architecture or learning procedure e.g. by adding
more layers, ensemble/adversarial training or changing the loss/activation functions. Proactive
defenses are generally more valued, as they provide relatively better robustness against white-
box attacks. Nevertheless, both proactive and reactive defenses are easily circumvented by the
iterative white-box adversaries. In this paragraph, we recall the main defense technique that
reached the state of the art robustness performances.

1. Minmax Mardy et al. formulation, 2017 [70] : The key point is that the loss function we
usually minimize is jut a proxy to improve accuracy of the model. Recall that the accuracy
is the fraction of inputs which are correctly classified however, the robust accuracy is the
faction of inputs such that the predicted class remains unchanged on a ball around it. The
size and form of this stable neighborhood depends on the used norm and the intensity of
the supported perturbation. It is worth noticing that adversarial examples have shown that
highly accurate models may have zero robust accuracy scores. Thus, in [70], the author
proposed to minimize the maximum of the loss on a given ball instead of minimizing the
loss. So, the adversial training solution may be estimated as

min
w

max
x∈B(x,ϵ)

Loss(x, y,W )

instead of
min
w

Loss(x, y,W )

.

However, the estimation of maxx∈B(x,ϵ) is not an easy task. In [70], it has been proposed to
estimate the max on an L∞ ball using an ascent projected gradient PGD. Once a solution
xmax is estimated, the network weights are optimised as usually but with fixed input
: minw Loss(xmax, y,W ). The obtained results suggest an significant improve in the
robustness sore while keeping high accuracy.

2. Robustness and accuracy tradeoff formulation : TRADES, Zhang et al. 2019 [?] :TRADES
is based on the following observation. Accuracy by itself is not good since adversarial
examples easily fool the model and, on the other hand, robustness by itself is not good
since constant models are robust but not relevant. Thus, the best solution have to be a

62



[L1.5] Tests and audit requirements - Final report

tradeoff between both measures. The obtained algorithm, called TRADES, try to solve
the following equation :

min
w
{Loss(x, y,W ) + λ max

x̃∈B(x,ϵ)
KL(f(x), f(x̃))}

3. Universal Adversarial Training, Shafahi et al. 2019: [71] : This is a defense strategy
against universal adversarial perturbations (UAP). It showed better results against UAP
than previous defenses including PGD adversarial training. It also worth noticing that
contrary to other defense approaches not easily scalable for large data sets, the UA train-
ing scales better to ImageNet than adversarial training because in this case one adversary
is constructed for many images.

4. Randomized Smoothing (Cohen et al. 2019) [72]: This method focuses on constructing
robust models for both regression and classification tasks. It consists in training a foun-
dational model using Gaussian data augmentation. Following this, a smoothing function
is applied to this base model to develop a new predictive model,

In the context of classification tasks, randomized smoothing guarantees a specified level
of accuracy within a certain radius, where perturbations are constrained. This implies that
the model’s predictions are ensured to maintain their accuracy for inputs falling within
this defined radius. Similarly, in the case of regression tasks, randomized smoothing
generates an interval where the prediction is assured to fall, thereby providing a measure
of certainty for the output.

5. Lipschitz model Szegedy et al., 2014, Goodfellow et al., 2015: Lipschitz constraint is
a property that characterizes a function’s behavior by ensuring that a small change in its
input results in a small change in the output. In the context of neural networks, this means
that a slight perturbation to the input data should lead to only minor fluctuations in the
model’s predictions.Mathematically a function f is said to be Lipschitz when the norm
of its first derivatives is bounded by some constant L which it’s minimum value is called
the Lipschitz constant of the function.

∥f(x1)− f(x2)∥ ≤ L∥x1 − x2∥ ∀x1, x2,

This means that if x1 and x2 are close to each other, then their predictions f(x1) and
f(x2) will be close to each other too.

Formally, for a neural network model, maintaining a Lipschitz constraint is crucial for
enhancing robustness. It limits the sensitivity of the model to small changes in the input
and can be particularly beneficial for classification tasks. When a classification model
adheres to a Lipschitz constraint, a slight modification in the input data will correspond
to a proportionate adjustment in the classification logits. As a result, the model becomes
less susceptible to noise and minor variations in the input.

However, the significance of Lipschitz constraint is not limited to classification alone. It
can also be extended to regression tasks. In regression, the model’s objective is to predict
continuous values, and the Lipschitz constraint plays a similar role in ensuring that small
changes in the input data lead to only marginal changes in the output predictions.

6. Convex Outer Adversarial Polytope, Wong et al. 2017, [73]

7. Data dependent Randomised smoothing, Alfaraa et al. 2020, [74]
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8. Protecting classifiers against adversarial attacks using generative models, Samangouei et
al. 2018, [75]

To conclude on the subject of adversarial attacks and defenses, we can say that there exists
a real ping-pong game, or an endless cycle between these two aspects 27. Indeed, each
time a defense is established, within a few months a new adversarial attack is created to
bypass it. This situation has been repeating itself for many years, with many different
cycles.

Figure 27: Attack vs Defense

In the 2020 study ”Benchmarking Neural Network Robustness to Common Corruptions
and Perturbations [76]” conducted by Hendrycks et al., it was observed that the robustness
of neural networks against adversarial attacks does not ensure their robustness against
everyday corruptions.

Nevertheless, the researchers proposed an effective solution in this paper to bolster the ro-
bustness of neural networks against such prevalent corruptions. They suggested a method-
ology to enhance the resilience of neural networks against a wide array of image corrup-
tions, emphasizing the adaptability of the AI system.

4.4.2.5 Uncertainity quantification

Now, let’s consider we’ve applied every available method to construct a robust AI model.
Our next step would be to examine whether our model can identify out-of-distribution (OOD)
inputs. It’s crucial to remember that a reliable AI in high-risk domain must not only be robust
but also capable of detecting OOD. To achieve this, we’ll delve into uncertainty quantification

The main questions we will try to answer in this section are :

• What is the uncertainty in the machine learning context?

• How to o quantify it? How to evaluate it? What method and scores to do it?

• What the ”uncertainty evaluation” is useful for ?
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Uncertainty means working with imperfect or incomplete information. It is fundamental to
the field of autonomous car, yet it is one of the major obstacles that could delay the secure
commercial deployment of autonomous driving system on a large scale. We can identify two
sources of uncertainty in AI models: epistemic and aleatoric uncertainty.

Epistemic uncertainty is the uncertainty represented in the model parameters and captures
the ignorance about the models most suitable to explain our data. This type of uncertainty can
be reduced with additional training data and therefore carries the alternative name “reducible
uncertainty”. A model will broadcast high epistemic uncertainty for inputs far away from the
training data and low epistemic uncertainty for data points near the training data.

Aleatoric uncertainty captures noise inherent to the environment i.e., the observation. Com-
pared to epistemic uncertainty, this type cannot be reduced with more data but with more precise
sensor output. This two-levels uncertainty can theoretically help users understand if a model
is incorrect because it lacks data or because the example is intrinsically ambiguous. The third
type is called predictive uncertainty which is the conveyed uncertainty in the model’s output.
Predictive uncertainty can combine epistemic and aleatoric uncertainty.

Figure 28: Epistemic and aleatoric uncertainty [14]

In classification tasks, quantifying uncertainty entails providing an output class label along
with the confidence level associated with the prediction. This confidence is often represented as
a probability, which indicates the likelihood of the data point belonging to the assigned class.

In regression tasks, quantifying uncertainty involves not only providing the predicted mean
output value but also offering a measure of the uncertainty associated with this value. This
measure of uncertainty can be expressed as either the variance or the standard deviation of
the prediction. These metrics provide an indication of how the predicted values are dispersed
around the mean.

The Uncertainty estimation may be useful for:
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• Knowing when to trust model’s predictions, especially under dataset shift

• Better decision making: Calculating the risk vs reward associated with prediction (worst
case vs average case)

• Active learning: Getting more data in regions where the model is uncertain

• Open set recognition

• Lifelong learning

• Exploration in reinforcement learning

In this document we will focus on one main application : validate robustness of models on
tasks in connection with uncertainty estimation. Valid models according to this approach are
”excepted to know what they don’t know”. They are supposed to notice when they are unsure
about a prediction. This could be partially achieved if it is able, while maintaining high predic-
tion score, to detect the existence and intensity of the following disruptions and corruptions for
which work has already been done :

• Detecting adversarial examples.

• Distinguishing between in-distribution (ID) and non-nominal data.

• Detecting common corruptions and perturbations

It is imperative to distinguish between two closely related properties: model robustness and
model uncertainty. Model robustness refers to its ability to make accurate predictions even in
the presence of perturbations and corruptions. On the other hand, model uncertainty pertains to
how well the model’s uncertainty reflects the presence and intensities of those disturbances.

The ideal validation for a model involves verifying its robustness in making correct pre-
dictions while detecting the presence and intensity of difficulties. This validation should con-
tinuously hold true until the point where the model becomes unable to predict accurately. In
such cases, the model should detect and inform about its limitations promptly. This concept is
encapsulated by the famous phrase, ’models have to know what they don’t know.’

In practical terms, we introduce ’calibration error’ as a metric to evaluate a model. Calibra-
tion error represents the difference between a model’s expressed confidence in its predictions
and the actual accuracy of those predictions.

Figure 29: Calibration error

Essentially, it measures how well the model’s confidence aligns with reality. The relationship
between accuracy and confidence is proportional: as accuracy increases, confidence should
also increase, and vice versa. Therefore, to validate our AI model effectively, we expect the
calibration error to remain close to zero.

If the calibration error deviates significantly from zero, our AI model might be either over-
confident or under-confident, indicating a lack of proper calibration. In such cases, it becomes
crucial to improve the quality of uncertainty by calibrating the AI model
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Figure 30: Visualization of the four different types of uncertainty quantification methods [14]

4.4.2.6 Calibration

Calibration is a vital method used to assess the confidence of a prediction model in its pre-
dictions relative to their actual accuracy. In simpler terms, it evaluates how well a model’s
predicted probabilities align with the real-world frequency of the events it predicts. It has been
proved that there exists a strong correlations between adversarial robustness and calibration.
In fact, it has been found across many datasets that adversarially unrobust data points, where
small adversarial perturbations to the input are able to fool the model into wrong predictions,
are more likely to have poorly calibrated and unstable predictions.This has lead to new use for
adversarial robustness as a means to more generally improve model trustworthiness, not just
by limiting adversarial attacks but also improving calibration and stability on unexpected data.
More, the adversarial example defense can yield substantial robustness gains on diverse and
common perturbations corruption.

Figure 31: Temperature Scaling : Instead of computing the Softmax, all the logits (values just before the final
activation, here Softmax) are divided by the same value called temperature. [14]
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Calibrated predictive uncertainty is important because it enables accurate assessment of risk,
allows practitioners to know how accuracy may degrade, and allows a system to abstain from
decisions due to low confidence. It involves re-calibration of probabilities on a held-out val-
idation set through temperature scaling which was shown by Guo et al. [77] to lead to well-
calibrated predictions on the i.i.d. test set. Temperature Scaling (TS) is in fact a state-of-the-art
among measure-based calibration methods which has low time and memory complexity as well
as effectiveness.

Figure 32: Visualization of the different types of uncertainty calibration methods [14]

4.4.2.7 Active learning : an application of uncertainty estimation

Beside AI safety, there exist many applications which rely on model uncertainty. These
applications include choosing what data to learn from, or exploring an agent’s environment
efficiently. Common to both these tasks is the use of model uncertainty to learn from small
amounts of data. This is often a necessity in settings in which data collection is expensive
(such as the annotation of individual examples by an expert), or time consuming (such as the
repetition of an experiment multiple times). In this section, we will focus on the active learning
technique in the context of computer vision with deep learning. This approach approach stems
from the observation that there’s no need to annotate all the data because most instances are
not informative to give better performance [78]. Therefore, one can construct a strategy to
select and annotate a smaller, but informative subset of the abundant unlabeled data to train the
model. This process is usually employed iteratively, i.e. selecting and annotating a number of
subsets in so-called cycles and re-training the model on the so-far collected data. Moreover,
an active learning strategy usually assumes that the output from a model trained on data from
previous cycles can be used to select a subset for annotation in the current cycle. Such informed
query-based procedure motivates the name active learning.
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4.4.2.8 Active learning depends on the learning task

In the active learning context, the significance of instances depends on their importance in
the learning process, i.e. their improvement of the predictive capacity of the model. Thus, the
measure of this weight, necessarily depends on the nature of the task. In the context of classi-
fication, it is a question of measuring the difficulty that the model encounters when assigning
a class to a given image. This uncertainty could be measured using the entropy for example
or simply using the maximum probability over all the classes : the lower this value, the more
informative the instance. In the context of regression, the proposed ideas are focused on the
dispersion of both the dependent (Y ) and independent (X) variables. This allows to detect most
of the variability in the regression model and thus reduce its variance. Finally, in the detection
case, to the best of our knowledge, there is no consensus on a measure to estimate the totality of
the information provided by an instance. Indeed, optimizing the model in this case, consists in
increasing its capacity to detect objects, find their corresponding classes and also their bounding
boxes. Moreover, this should be measured over all detected objects of each image. Reasoning
in this way, several problems arise. First, should one or two criteria be privileged or should all
three be treated together? Second, How would it be possible to aggregate heterogeneous scores?
Next, should we aggregate the three criteria on each object and then find an aggregation on the
whole image or aggregate each score over all objects first? Finally, which aggregation criterion
would be suitable for each measure?

Most of these questions remain open today. All the proposed works are limited to an ag-
gregation of a single measure (often of classification) on all the instances while ignoring all
the others. In this document, we start by describing the main active learning approaches in the
context of classification, then regression and finally we consider the case of detection.

4.4.2.9 Active Learning for classification

The key idea is always conceived on the notion of uncertainty, i.e. how uncertain the model
is about the class to predict for a given image. In the following , we list a not exhaustive list
but we cover the great majority of the confirmed approaches having given significant results on
classic data sets

1. Uncertainty Sampling : One way to reduce labeling cost is to identify the data points that
the underlying model finds most difficult to classify and provide labels only for those.
We score a data point as simple or complex based on the soft-max output for that point.
Suppose the model has N output nodes and each output node is denoted by zj . Thus, for
an output node zi from the model, the corresponding soft-max would be

pi :=
exp zi∑
j∈1:N zj

, and for the predicted class c : pc = argmax
i
{pi}

.

Using those probabilities, many approaches may be defined :

• Least Confidence : the probabilities are used to pick elements for which the model
has the lowest confidence, i.e. the smallest pc

• Margin Sampling then margin sampling would pick elements using the distance
between the two largest probabilities in each image.
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Figure 33: Corest selected points

• Entropy : then Entropy sampling would pick elements using with larges values of :
−
∑

i pi log(pi)

It is well known that both least confidence sampling and margin sampling pick some data
points that have pairwise confusion however entropy focuses on the data points which
have confusion among most of the labels.

2. BADGE [79]: Batch Active learning by Diverse Gradient Embedding (BADGE) samples
groups of points that are disparate and high magnitude when represented in a halluci-
nated gradient space, a strategy designed to incorporate both predictive uncertainty and
sample diversity into every selected batch. This allows it to trades off between uncer-
tainty and diversity without requiring any hand-tuned hyper-parameters. Here at each
round of selection, loss gradients are computed using the hypothesized labels. While
other approaches sometimes succeed for particular batch sizes or architectures, BADGE
consistently performs as well or better, making it a useful option for real world active
learning problems.

3. Adversarial Techniques: they are motivated by the fact that often the distance computation
from decision boundary is difficult and intractable for margin-based methods. Adversarial
techniques such as Deep-Fool, BIM(Basic Iterative Method) [80] etc. have been tried out
in active learning setting to estimate how much adversarial perturbation is required to
cross the boundary. The smaller the required perturbation, the closer the point is to the
boundary.

4. CORESET [81]: This technique tries to find data points that can represent the entire
data set. For this, it tries to solve a k-Center Problem on the set of points represented
by the embedding obtained from the penultimate layer of the model. Embedding from
the penultimate layer can be thought of as the extracted features, therefore, solving the
k-Center Problem in this new feature space can help us get representative points. The
idea in Coreset strategy is that if those representative points are labeled, then the model
will have enough information. For example, as illustrated in figure 33, Coreset strategy
would select the blue points if the union of red and blue points were given as input and
the budget was 4.

5. FASS [82]: Filtered Active sub-modular Selection (FASS) combines uncertainty sam-
pling idea with Coreset idea to most representative points. To select the most representa-
tive points it uses a sub-modular data subset selection framework to select a subset based

70



[L1.5] Tests and audit requirements - Final report

on uncertainty sampling using the sub-modular functions as ’facility location’, ’graph
cut’, ’saturated coverage’, ’sum redundancy’ and ’feature based’ to we select a subset
of images. Here sub-modular functions are often used to get the most representative or
diverse subsets.

6. GLISTER-ACTIVE [83]: performs data selection jointly with parameter learning by try-
ing to solve a bi-level optimization problem. First, an inner level optimization very similar
to the problem encountered while training a model except that here the data points used
are from a subset. Therefore this tries to maximize the log-likelihood with the given
subset. Next, an outer level Optimization which is also a log-likelihood maximization
problem. The objective here is to select a subset S that maximizes the log-likelihood
of the validation set with given model parameters. This bi-level optimization is often
expensive or impractical to solve for general loss functions, especially when the inner
optimization problem cannot be solved in closed form. Therefore, instead of solving the
inner optimization problem completely, a one-step approximation is made while solving
the outer optimization.

By comparing the performance of these active learning algorithms against the strategy of ran-
domly selecting points to label, the labeling efficiency of these active learning algorithms be-
comes clear. Here are some of the results obtained on common datasets using some of the active
learning algorithms:

1. CIFAR 10 : the best strategies show 2x labeling efficiency compared to random sampling.
BADGE does better than entropy sampling with a larger budget, and all strategies do
better than random sampling.

2. CIFAR 100 : all strategies exhibit a gain over random sampling, but the per-batch version
of BADGE performs similarly to random sampling. (Regular BADGE does not scale to
CIFAR-100!)

3. MNIST : all strategies exhibit a gain over random sampling, and both entropy sampling
and BADGE achieve a 4x labeling efficiency compared to random sampling.

4. FASION MNIST : all strategies exhibit a gain over random sampling, and both entropy
sampling and BADGE achieve a 4x labeling efficiency compared to random sampling.

5. SVHN : all strategies exhibit a gain over random sampling, and both entropy sampling
and BADGE achieve a 3x labeling efficiency compared to random sampling.

6. Robustness against redundancy : compared to random sampling, all algorithm even en-
tropy sampling handles redundant data poorly while BADGE handles redundant data pro-
ficiently.

4.4.2.10 Active Learning for Regression

There is an abundance of literature examining the applicability of active learning to problems
of classification. However, the use of active learning for regression has received considerably
less attention [84]. Nevertheless, the theoretical capability of active learning to significantly im-
prove the estimation of a function in the presence of noise has been shown by Castro et al. [85].
This study shows that the learning rate may be increased when learning functions “whose com-
plexity is highly concentrated in small regions of space” i.e., functions generally better suited
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to kernel-based models. This is due to the ability of active learning to quickly isolate interest-
ing regions of the version space using techniques such as model uncertainty and local variance.
Although the study does not find that active learning could provably significantly outperform
passive sampling in learning a general function without localized complexity, the goal of data
set labeling is not necessarily to approximate a general function, applicable to unseen data, but
rather to discover that function which best approximates the finite sample of data in the unla-
beled pool. Later, Niyogi [86] showed promising practical results in applying active learning to
estimating polynomial functions which do not have this property of localized complexity. On
the other hand, a number of active learning selection strategies initially developed for use in
classification have been shown to perform well when used in regression problems:

1. Expected Model Change Maximization [87] which aims at choosing the unlabeled data
instances that result in the maximum change of the current model once labeled. The
model change is quantified as the difference between the current model parameters and
the updated parameters after the inclusion of the newly selected examples. In light of the
stochastic gradient descent learning rule, the change as the gradient of the loss function
is approximated with respect to each single candidate instance. Experimental results on
both UCI and StatLib benchmark data sets have demonstrated a clear acceleration in the
selection process.

2. Transductive Experimental Design [88] employs statistical techniques from “Optimal Ex-
periment Design” to assess the utility of an instance based on its non-label features. This
approach avoids the need to train additional models and reduces the overhead incurred in
employing an active learning selection strategy.

3. Query By Committee [89] is an example of an ensemble-based approach to active learn-
ing. QBC trains a committee of models using different views of the available data; and
selects for labelling the unlabelled instance on which each of the models in this committee
most disagree. Burbidge et al. [89] have explored the application of the QBC algorithm
to linear regression models, finding it to perform favourably against a random baseline.

4. Expected Gradient Length [90] is a selection strategie that assign an expected utility of
each unlabeled instance based on the output of models generated using the currently la-
beled data. Like QBC, it builds a committee of models using samples of the labelled
dataset. However, unlike QBC, unlabelled data is scored on the basis of the disagreement
between the aggregated output of the committee on the one hand, and the predicted out-
come of a model built on the entire labelled dataset — the output model — on the other.
The idea behind EGL is that those instances which maximise the change in the output
model are most likely to improve the model’s performance.

5. Kernel Farthest-First [91] : is based on farthest-first traversal sequences in kernel space.
The KFF algorithm seeks to label the unlabeled instance which is least similar to (i.e.
farthest from) the currently labeled data set, with the distance between a point and a set
defined as the minimum distance between that point and any instance belonging to the
set. The KFF algorithm has been shown to outperform a random baseline on a simple
XOr classification problem.

6. Density Based Selection Strategy [92]: density, or closeness to the labelled data, is con-
sidered as a selection strategy and implemented as the inverse of the Kernel Farthest-First
Diversity algorithm described above to label those instances closest to the currently la-
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beled set. Using cosine distance as a similarity measure between instances, density-based
selection strategies has not shown as effective as the other approaches described above.

7. Exploration Guided Active Learning [93]: is a classifier-independent approach which of-
fers computational advantages over committee-based alternatives. The EGAL algorithm
is a model-free approach to active learning based on a combination of density and di-
versity measures. Unlabelled data is compared using a similarity measure, cosine for
instance, but the approach is independent of the particular measure used. Only those in-
stances which are sufficiently distant from the currently labeled data set (candidate set)
are considered for labeling. Within this candidate set, instances are ranked according to
their density within the data set as a whole, and those in stances with the greater density
are preferred. EGAL works on the assumption that the densest instances are most rep-
resentative of the current data, allowing EGAL to balance a bias for selecting dissimilar
instances for labeling with a resilience to labeling outliers which are not representative of
the data as a whole.

4.5 Formal methods

Finally, this document will present some approaches and good practices on the use of formal
evidence in the evaluation of VAs.

4.5.1 Foreword

Formal methods are a scientific and technical field aiming to design techniques bringing
strong mathematical guarantees on the behaviour of software systems. Applying formal meth-
ods to critical industrial software was met with numerous successes. For instance the Paris
subway lines 1 and 14 are fully automated; the correct behaviour of their software was proven
using the Method B and Atelier B[94]; the Frama-C for C code analysis platform proved the
absence of runtime error in critical code for EDF [95]. More globally, saying that formal meth-
ods as a scientific discipline and an industrial practice contributed to make software safer is not
an understatement [96].

Usually, formal methods can be characterized by their soundness: if a method answers that
a property is true, then the property is actually true. One key point is thus to express the specifi-
cation in a sufficiently unambiguous language. ISO 26262 expresses those languages as formal
(or semi-formal) languages. There exist a plethora of formal languages, for there are multi-
ple possible abstraction levels. Examples of formal language are SMTLIB [97], used for SMT
solvers; or the ACSL specification language used to specify properties for C languages [98].

Once the specification is available in a formal language, it is then possible to apply a formal
technique to obtain a verified answer. See figure 34 for a rough description of formal methods
for verification of programs.

Multiple norms describe how to include formal methods in the development process of trans-
portation systems, for instance ISO 26262 and CENELEC 50128. Regarding cybersecurity, the
Common Criteria for Information Technology Security Assessment define an Evaluation As-
sessment Level (EAL), ranging from 1 to 7. EAL5, EAL6 and EAL7 define (Semi)formally
Verified Design and Tested, and certify the use of formal verification during the design, devel-
opment and evaluation phases for a given security target. Among EAL5-7 certified systems
are network monitoring software and hardware and embedded execution environments on in-
dividual vehicles. Cybersecurity guidelines for software development and assessment (Bureau
Veritas - SW200) includes ”the use of formal verification tools to check the absence of code
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Figure 34: Formal methods prove the behaviour of a component against a formal specification. Adapted from [15].

weaknesses is considered highly efficient, in particular for critical logic components and secu-
rity functions.”

4.5.2 Formal verification of artificial intelligence software: challenges ahead

In the last decade, the boom of data-based machine learning programming and its subse-
quent diffusion in the software industry and society as a whole led to consider their integration
in critical systems, among which are transportation software systems. The very fact that the
PRISSMA project exists is a strong evidence of this endeavour.

Data-based machine learning have several key specificities that prevent the direct application
of formal methods [15].

4.5.2.1 The specification problem

Expressing a specification for data-based programs is difficult. For instance ”a picture with a
pedestrian” has no mathematical, unambiguous definition. This comes from the fact that mod-
ern machine learning programs only get a specification of their behaviour through examples;
they also manipulate complex concepts, that embed culture, education and past political choices
that cannot be accurately translated to computers. More precisely, this means that the defini-
tion of the Operational Design Domain is ambiguous. This ambiguity is difficult to mix with
formal languages. At the moment, formal techniques can check properties that are either local
(like adversarial robustness [99]) or functional properties, provided by expert knowledge [100].
There are some preliminary work on formally assessing the fairness of a machine learning pro-
gram [101].

The CAISAR platform [102], or more generally neuro-symbolic verification[103] aim to
embed machine learning programs into formal languages in order to express more complex
properties.

4.5.2.2 The misalignment problem

Coverage testing, symbolic execution and trace analysis are common analysis techniques
that rely on exploring the execution tree of a program. They rely on the underlying assumption
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that this structure yields a semantic. Modern data-based programs - especially neural networks
- do not necessarily respect this assumption. The result of a learning procedure is usually a
succession of operations on vast arrays of numbers. This sheer size induces a complexity that
makes the structure of a machine learning program difficult to make sense of. There is a divorce
between the intend of the developer and the resulting program structure.

The whole field of explainable artificial intelligence (xAI) aims to produce interpretable
models, either by design or post-hoc.

4.5.2.3 The scalability problem

Verification decision procedures have difficulties to scale to modern neural networks; their
depth and the use of non-linear operations are still a challenge even for the most recent tools,
like α-β-CROWN [104].

There is an ongoing work in the academic community to standardize the evaluation of formal
methods applied to artificial intelligence systems. For instance, the Competition for Verification
of Neural Networks VNN-COMP https://sites.google.com/view/vnn2023 aims
to evaluate tools on commonly agreed benchmarks. The full report of 2021 venue is available
at [105].

ISO/IEC TR 24029-1 defined a taxonomy of methods used to assess the robustness of ma-
chine learning programs, including formal methods. The ISO/SAE 21434 (cybersecurity of
road vehicle systems) also include a section on formal methods.

4.5.3 Suggestion for requirements

4.5.3.1 Functional properties

guarantee that a program respect a functional property on a whole domain: there is a re-
quirement for a mathematical proof that the program will respect the functional property. Like
each proof, there are hypothesis, and those hypothesis can describe for instance the operational
domain, a certain class of functional property, and so on.

4.5.3.2 Absence of bugs

guarantee that a program is devoid of a certain class of bugs on a whole domain can be
necessary. For instance, ”this program will classify all inputs and their neighborhood similarly
on this operational domain”

4.5.3.3 Quality of the dataset

requirements must include the dataset, to ensure a sufficient protection against tempering
(such as poisoning attacks [106]), a measure of unwanted biases, its intended purpose [107]. A
machine learning program behaviour will largely depends of its datasets; Confiance.ai’s project
5 is solely focusing on data engineering best practices

4.5.3.4 Security and privacy

Neural network present notorious issues for privacy, as it is possible to identify samples used
for training [108] or reconstruct said inputs. As of today, to the best of our knowledge there exist
no norms that qualify or enforce the level of privacy integrity that a deep learning program must

75

https://sites.google.com/view/vnn2023


[L1.5] Tests and audit requirements - Final report

comply with. The state-of-the art currently rely on Differentialy private learning [109], altough
there are some doubts on the actual usefulness of this approach in realistic use cases [110].

4.5.4 Suggestion for a protocol

Overall, there are use cases where needs arise for proving the correctness of systems against
a specification; often in critical systems (such as automotive transport). Components that are
responsible for perception, decision and planning are potential targets for those requirements.

4.5.4.1 Defining scope

target the scope of where the guarantees are expected: cybersecurity, functional properties,
safety of operation

4.5.4.2 Inclusion during design, conception and test

include formal or semiformal methodologies during the design phase, or design the program
in a way that eases the formal application of said methods

4.5.4.3 Defining a formal language appropriate to specification

definition of a specification is key. To be checked against, a specification should be phrased
into a semiformal or formal notation. This is especially difficult for machine learning systems,
as they are expected to work on high-level abstractions that are embedded with social signifi-
cance that cannot be phrased to a computer. As an illustration, it is impossible to obtain a formal
definition of a picture of ”pedestrian”; and defining whether a person in a wheelchair is to be
considered a ”pedestrian” or not is subject to human debate that the machine cannot capture

the choice of formal method depends on the properties to check (which is embedded in the
formal specification)

4.5.5 Examples of techniques

4.5.5.1 Abstract interpretation and bound propagation

Modern neural networks are computing inputs from high dimensional datasets (images,
sounds, text corpuses) to output complex answers - as the probability to belong to a certain
class for a classification model, or a sampling over a distribution on a generative model. The
size of those input spaces makes methods solely based on sampling very brittle: high dimen-
sional spaces we consider here have counter intuitive properties, like a non-uniform distribution
in the input space[111].

Abstract interpretation[112] consists on building an over-approximation of a program’s be-
haviour that is easier to analyze. In the context of neural network verification, the overappox-
imation is a neural network that handles numerical sets computations - the simple intervals or
more accurate but costly zonotopes. Formal verification of a neural network’s robustness boils
down to the following:

1. express a numerical set describing possible perturbations: for instance a ball centered on
a given input x with radius ϵ can be described as an interval [x− ϵ, x+ ϵ]

2. compute this numerical set on the abstract neural network
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3. collect the output of the abstract and check whether it satisfies the property at hand (typi-
cally, a correct classification result)

Here are some of the most prominent tools that leverage abstract interpretation or bound
propagation: the ERAN framework [99, 113, 114], constraint propagation frameworks like α, β
CROWN [115, 104]or the nnenum tool [116]. In the context of Confiance.IA first pillar, the
tool PyRAT (Python Reachability Assessment Tool) developed by CEA was used successfully
to check properties on several industrial use cases.

There exist multiple refinements to bounds propagation. For instance, the tool VeriNet [117]
makes use of symbolic variable propagation. Symbolic variable propagation consist on keeping
track of the relationships between variables using their symbols. This can be used to refine
results of otherwise imprecise numerical domains like intervals.

4.5.5.2 SMT calculus

Satisfaction Modulo Theory (SMT) calculus is a technique that aims to combine the power
of Boolean calculus with more expressive theories. Such theories include for instance real
numbers arithmetic, arrays or uninterpreted functions. Example of state-of-the-art SMT solvers
include Z3 [118]. Such solvers are the result of decades of research, and are able to solve
difficult problem instances.

One of their main drawback, however, is their inability to efficiently deal with neural network
activation functions. For instance, the sigmoid function f : x ∈ R 7→ 1

1+exp−x make use of the
exponential function, which is difficult to model. Rectified linear unit (ReLU) f : x ∈ R 7→
max(x, 0) a piecewise-linear function. When encountered, such function must be splitted in
two linear variant: either x < 0, thus max(x, 0) = 0, or x > 0, thus max(x, 0) = x. Such
case-splitting occurs for each occurrence of ReLU, which leads to a prohibitively vast search
space (2n possible cases where n is the number of neurons).

Reluplex and its successor Marabou [100] constitute a line of work that aims to adapt clas-
sical SMT routines to piecewise-linear functions. The authors proposed a modified simplex
algorithm to handle ReLUs, drastically reducing the number of necessary case-splitting. It al-
lowed previously intractable problems to be solved, for instance the ACAS [119] benchmark.

4.5.5.3 Mixed Integer Linear Programming methods

It is possible to model a neural network using mixed integer linear programming (MILP).
Such modelling is used for instance in MIPVerify [120]. MILP tend to be slightly less ex-
pressive than SMT approaches to express properties: for instance, conjunctions of disjunctions
are difficult to express, and non-linear properties are impossible to prove directly. In the case
of non-linear properties, it is necessary to produce linear relaxations, which give less precise
results.

4.5.5.4 Deductive verification and Weakest Precondition Calculus

Although solvers like Alt-Ergo [121] or tools like Coq, Agda and Isabelle are used for deduc-
tive program verification, there exist to the best of our knowledge little application of weakest
precondition calculus to formal neural network verification. The only work we found is that of
Vehicle-lang [122], a tool to embed neural network programs into proofs in the Agda theorem
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prover. In some sense, the CAISAR platform [102] can interface with the Coq theorem prover,
but we did not find any application yet.

4.5.6 Limitations

Formal methods for machine learning verification and validation is still a nascent field. Al-
though the tools are increasingly efficient, scalability is still an issue that prevent the verification
on certain use cases that deal with complex programs, or perceptual data like hi-res images or
sound. For instance, modern architectures like transformers, deep detection models and diffu-
sion models are currently not handled by most of the presented tools.

Tools are evolving really fast: a tool developed two years ago could be replaced by a new,
better performing tool but with a different interface, requiring work for adapting the verifi-
cation problem to the new tool. To mitigate this issue, platforms such as CAISAR [102] or
DNNV [123] aim to provide a unified modelling interface. GOOSE [124] is an upcoming meta-
solver that automatically select the proper solver for a given problem instance.

Literature currently focus on a subset of properties, such as local robustness against a per-
turbation, or well-known, academic benchmarks on low-dimensional inputs. During the course
of verification of programs embedded in autonomous mobility systems, properties that do not
fit in those two definitions will be encountered; which may limit the use of existing tools for
checking those properties.

Ultimately, formal methods require a specification to check. Specifically, there need to be
some kind of mathematical characterisation of the neural network behaviour. Producing such
mathematical formulation can be difficult, due to the dimension of the spaces we consider or
the conceptual complexity of the inputs [15]. For instance, it is impossible to formally define
what is an image of a pedestrian considering all camera angles, weather conditions or brightness
conditions. Verifying that a program does not take a certain subset of decisions when presented
an image of pedestrian would be impossible, unless reducing the definition of what a pedestrian
is to the point of harming the performance of the system.

Formal methods for machine learning usually require full access to the model, and sometimes
to the data it was trained on. Due to legal or technical reasons, this may not be achievable. A
partial access to the program and its data (for instance, synthetic data) could still be workable;
it would however require a description of the process used to obtain the synthetic dataset.
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A A PRISSMA method to generate scenarios from the ODD and the OEDR

Using the scenario approach of DGITM and the one presented in the ADS act, as well as the
ODD from WP8 and requirements, a PRISSMA database scenario generation method is pro-
posed. This method aims at defining nominal and critical scenarios. Failure scenario generation
is not included in this work. The ODD taxonomy structure proposed by WP8 is shown on figure
35.

The parameters to generate the database will be define by considering scenario layer by
scenario layer and use a principle of increasing complexity. This method should aloow to ex-
plore the ODD space and shall be combine with requirement analyses. The requirements are
presented in Annex B.

First observation, infrastructures are built to allow manoeuvres, a first classification in 5
categories relating infrastructures and manoeuvres is proposed for a passenger transport system
based on automated vehicles. See Figure 36.

First stage: To generate scenarios with a growing complexity, the first stage is to consider
only the static infrastructure, the manoeuvres and the responses of the system which respectively
corresponds to the layers 1/2 and 4 defined in the DGITM document (see Figure 37. In the
ODD taxonomy, the branches physical infrastructures, scenery and digital infrastructures are
taken into account. The traffic conditions, weather conditions or any other road user behaviour
are not yet examined.

To generate a first set of scenarios, manoeuvres and infrastructure categories should be anal-
ysed one by one. All infrastructures elements included in the ODD have to be listed and asso-
ciated with manoeuvres and the intended responses. This analysis shall be run using functional
and technical requirements. The boundaries of the ODD are important to be investigated. A
set of a manoeuvre, a response and a large category of infrastructure leads to the definition of a
functional scenario.

It is possible to organise the scenario database considering that each level includes scenarios
from the lower levels, as done in the MOSAR platform. (See PRISSMA deliverable L2.1). For
instance, each functional scenario can include several sets of Logical scenarios. The Logical
scenarios contain descriptors of the infrastructures, the manoeuvre and response parameters,
with defined ranges of metrics. By setting a value for each logical scenario parameter, a concrete
scenario is obtained.

To generate a relevant scenario database in a practical way, it may be more convenient to
define functional scenarios by refining the infrastructures / manoeuvres categories presented
in figure 36. Then the descriptors and metrics of the ODD static and digital infrastructures,
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Figure 35: ODD taxonomy defined in WP8 (only the first levels are presented)

manoeuvres and the scenery shall be included in the database by defining appropriate logical
scenarios for each functional scenario category. The ranges of parameters contained in the
logical scenarios shall include the boundaries of the ODD.

Second stage: For all infrastructures included in the ODD, traffic hazards have to be taken
into account. In the ODD taxonomy, the Traffic condition branch is included in the process.
Only reasonably likely events have to be considered. By adding traffic conditions and other
road user behaviours, new manoeuvres and responses shall be defined. Again, their definitions
shall be based on functional and technical requirements. This work corresponds to the OEDR
analysis defined in the ADS Act method [1].

It is important to notice that adding events involving other road users may lead to define
nominal scenarios and also critical scenarios, i.e. with a possible accident outcome. Again,
this work consists in defining functional scenarios including a manoeuvre, a response, other ac-
tors and their behaviour in a category of infrastructure. Within each functional scenario, logical
scenarios have to be specified to take into account all the ODD descriptors and boundaries.

Third stage: Two different tasks are to be done.
First, all scenarios defined at stage 1 and stage 2 shall be reanalysed to add the environmental
conditions. It consists in adding the environmental condition branch of the ODD to the process.
This work shall be done at the logical scenario level by defining the conditions descriptors and
metrics of the ODD.

Secondly, masks can affect the response of the systems. They can be static or dynamic. In
the DGITM document Scenario Generation, 6 types of masks are defined:
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Figure 36: Categories of manoeuvres according to the infrastructures.
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Figure 37: Scenario layers defined by DGITM [16].

• the intrinsic legibility of the infra, independent of the perception sensor (erased markings)

• the static masks (wall, billboard)

• the temporary masks (scaffolding, work zone, vegetation in front of a billboard)

• the fleeting masks (parked vehicle)

• the dynamic masks (vehicle in motion masking other users)

• the environmental masks due to weather conditions (fog)

Again they are to be included in the database at the logical scenario level. However, the
presence of a specific mask can lead to the definition of a new functional scenario according
to the requirements. As a result new functional scenarios can be created with their associated
logical and concrete scenarios.

Figure 38 presents an overview of the whole method.
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Figure 38: Scenario generation from ODD and requirements

B PRISSMA requirements
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1 INTRODUCTION 

1.1 Objectives of the PRISSMA Project 
To evaluate AI systems for automated & autonomous  mobility and ensure their operation, several challenges 
related to autonomous systems and AI must be addressed: 

1. Accounting for the "non-deterministic" nature of AI techniques. 
2. Managing the life cycle and evolution capabilities of systems and functions, particularly after the use 

of AI-based techniques. 
3. Maintaining auditability, robustness, and safety requirements specific to critical functions and 

systems. 
4. Standardizing the methods considered to enable compatibility with international work and to enable 

their deployment on a large scale. 
5. Managing the inherent complexity of a system of systems. 

Regarding the PRISSMA project, three objectives have been set: 

1. Identify and list safety and reliability objectives for AI-based autonomous mobility systems and 
develop complete validation processes for reliability aimed at the commercial operation of SAE Level 4 
autonomous mobility services by 2024. 

2. Ensure the availability of shared concepts to address the complexity of AI-based autonomous mobility 
systems, which can be used internationally. 

3. Participate in implementing prerequisites that will enable France to position itself at the European 
level to host one of the autonomous mobility test centers that will be developed in the coming years. 

To ensure the safety and reliability of systems to be deployed for commercial operation, PRISSMA's first mission 
will be to identify the characteristics of an AI-based system and its components (the "system under 
consideration" of the PRISSMA project), as well as the key indicators (KPI) corresponding to the objective to be 
achieved to demonstrate mastery of the system and the methods and processes to be implemented. 

Once the demonstration objects and objectives are identified, PRISSMA will need to develop questions to be 
asked to  the actor wishing to obtain the commissioning of  an AI-based autonomous mobility system, 
determine acceptable evidence, and specify the means of demonstrations and associated tools allowing this 
actor to demonstrate the safety  of their system. The demonstration objectives will be consolidated into a 
common reference and may result from ongoing work at the French, European, and international levels. 

PRISSMA will thus determine the means of qualifying simulation tools and associated databases, as well as 
requirements for processes using them. Close collaboration with pillar 1 will be necessary, as it will propose AI-
based system design tools and processes that can be evaluated by the actors using the PRISSMA method  to be 
declared applicable and sized to provide acceptable proof elements (tool qualification concept to validate test 
results). 

One of the project's challenges is the integration of simulation as a means of demonstration through the 
provision of acceptable proof. Indeed, the eventual use of this process as a necessary step in demonstrating 
mastery of functions is commonly recognized as essential to bringing autonomous mobility services to market 
due to the complexity of combinations of events and situations that may arise. PRISSMA will need to propose 
elements enabling the demonstration of this mastery, going up to homologation and incorporating 
improvements throughout the automated & autonomous road transport system  life cycle. 
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PRISSMA will rely on concepts and definitions from international work (UNECE, NHTSA, etc.), supplemented by 
the work of French industry working groups to ensure compatibility with their results, benefit from their results, 
and provide technical and scientific support for industry positions in return. 

The France Autonomous Vehicle Plan (FVA) has been working for several years to coordinate the efforts of the 
automotive and shared transportation industry to develop the technical and regulatory framework necessary 
for the deployment of autonomous vehicles. Thematic working groups, such as the Homologation & Testing 
Means working group for Autonomous Shared Transportation Systems (STPA), the Technical Regulations 
working group for Passenger Vehicles, the Validation working group, and the Automotive Technical 
Standardization Committee are all instances that bring together French experts on these topics to align the 
industry's positions and initiate joint projects aimed at testing and demonstrating the safety and reliability of 
autonomous systems. 

Finally, the certification framework and methodologies developed within the framework of PRISSMA should 
enable France to emerge as a leader in autonomous mobility at the European and international level. With this 
in mind, France aims to apply for the European call for tenders to support a limited number of test sites in 
Europe in the coming years. The location of one of these sites in France will assert the French industry's position 
in the race towards autonomy, while offering an advantage to the industry and economic and social 
repercussions that will benefit the chosen territory and its ecosystem. 
 

[REF: PRISSMA project application form to BPIFrance, section 1.2 - Objectifs] 

1.2 Purpose of document 
The purpose of this document is to define the requirements that must be satisfied by the PRISSMA 
method for demonstrating, justifying, or arguing the safety and security of an AI-based Automated 
Road Transport System (ARTS). When feasible, the aim isn't to prescribe what the method should do, 
but rather to specify the outcomes this method should ideally achieve. These outcomes are crucial in 
the context of its certification or the homologation of its vehicle by a third-party, under the 
delegation of governments, for authorizing the operation of such a system in public areas. An ARTS 
achieving to have the PRISSMA certification can be operated with a sufficient level of confidence in 
its safety and security. 

 

ARTS supplier 
 The term ARTS supplier is a generic term that can be declined by different entities during the 
implementation of the method. In some cases of applicable local regulation, this term can designate: 

• ARTS Operator 
• Service Organizer 
• technical ARTS system provide 

 
 

As an example, the "European ADS act" [EU 2019/2144]  has defined the following compliance 
assessment process to its requirements: 

• Part 1: The consideration of the most relevant scenarios for the ODD 
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• Part 2: The assessment of the ADS design concept and the audit of the manufacturer safety 
management system 

• Part 3: The tests of the most relevant traffic scenarios 
• Part 4: The credibility assessment for using virtual toolchain to validate ADS 
• Part 5: The in-service reporting to demonstrate the safety performance in the field 

Rather than defining the process, methods, and tools required to enable such safety demonstration and 
compliance assessment of ARTS, this document will focus on the requirements that this method should comply 
with in order to achieve the intended goals. In doing so, it provides a framework for the various working groups 
involved in the process, while avoiding restricting or biasing the proposals of methods that need to emerge 
from these working groups. 
 
Some of these requirements may not be met during this project, as the state-of-the-art in the field of AI safety 
assessment is still under development. However, ideally, the implementation of the PRISSMA method  that 
would satisfy all the requirements of this specification should be able to assess the safety of an ARTS and 
enhance its safety over time . 

 

This document is structured around the following 3 main parts: 

• Section 2: Specification on how the PRISSMA method should qualify the requirements 
applicable to the design of the ARTS (which corresponds to the descending part of the V 
cycle). These requirements should then be verified during the qualification of the AI 
components or ARTS itself. 

• Section 3: Specification on how the PRISSMA method should qualify the inputs (both 
documents, material or immaterial)  used for the evaluation (or the training) of the ARTS, 
considering that these artefacts are used to verify that the produced ARTS is compliant with 
its requirements, qualified by the requirements detailed in the section 2 

• Section 4: Specification on what the PRISSMA method should verify on how the artefacts 
qualified in the section 3  have been used to demonstrate that the ARTS is compliant with it's 
requirements expressed in the section 2. 

 

1.2.1 Key issues regarding safety assessment for AI 
In traditional system engineering,the safety insurance is based on the quality insurance principles : 
Plan-Do-Check-Adjust   where it is possible to check that the results comply with the expectation, in 
iterative enhancement process. In safety critical systems, the generic process for safety insurance is 
comparable with the generic process detailed below [doi: 10.1109/ISSREW.2019.00091]. 

• Hazard Analysis: Identifying potential hazards associated with the system's usage. 
• Safety Requirements: Establishing specific requirements to mitigate these hazards at 

system, software, and hardware levels. 
• Risk Mitigation: Developing and implementing measures to reduce the identified risks. 
• Verification: Demonstrating that the risk mitigation measures effectively reduce the risk to 

an acceptable level. 
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• Iteration: Repeating the process until the safety level is deemed acceptable. 

The SOTIF (ISO 21448:2022) relies on the hypothesis that the vehicle functional safety has been 
demonstrated through the application of the ISO 26262:2018, which in turns relies on the generic 
quality insurance principle. 

States-of-the-art (REF: PRISSMA) in AI shows that such hypothesis does not apply in AI and, more 
specifically  for supervised machine learning algorithms 

• specificability: behaviors easy to train for with datasets are very difficult to specify using 
requirements (example is pedestrian detection. What a pedestrian  is ? Does it means that 
people in a wheelchair are not included in this category?) 

• hazard assessment impossible without specification: How to define risk mitigation 
requirements when functional requirements are not defined? 

• risk mitigation verification is not possible: We cannot present irrefutable arguments 
demonstrating that these risk mitigation requirements are met (neither proof nor postulates that 
would demonstrate this coverage exist, due to issues of causality and non-linearity). 

• achieved quality level is not quantifiable: it remains unclear when to stop this retraining process. 
Iterative improvement of this quality level is not possible 

• isolation  of defect: is almost impossible inside a neural network at the state of the art. 
• quality assurance composition: demonstrating the system's quality assurance through the quality 

assurance of its AI components, similar to estimating system MTBF (Mean Time Between Failures) 
through the MTBF of internal components, is currently not possible at the state-of-the-art. 

 

1.2.2 The qualification strategy of PRISSMA method 
The PRISSMA certification of an Automated Road Transport System (ARTS) is based on the successive 
qualification of its constituent AI components and functions, as well as the concepts and processes of 
its life cycle: 

• Homologation of the vehicles 
• Qualification  of other system components (supervision, connected infrastructure) 
• Qualification of the ARTS supplier process, whether this process involves the integration of 

existing components or includes, directly or indirectly, the complete development of each 
component  

• Qualification of the ARTS operator and maintainer process, including it's safety management 
system (Système de Gestion de la Sécurité en Français) 

The homologation of the vehicle relies on: 

• The qualification of this vehicle supplier's process 
• The qualification of the AI components used in this vehicle 

 
All qualification processes through the PRISSMA method are based on equally qualified inputs: 
requirements, performance and safety objectives, Operational Design Domain (ODD), Object and 
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Event Detection and Response  (OEDR), routes, scenarios, and metrics. 
 

 

 

1.2.3 Issues and open topics 

1.2.3.1 TRL level of engineering methods used in PRISSMA 
Regarding the TRL (technological readiness level) of the possible methods expected to comply with 
the requirements expressed in this specification, the PRISSMA partners have decided to stay close to 
the state of the art of the engineering methods (TRL 6 minimum), with the following complement 
details: 

• Require justifications for completeness, coverage, that allow for a consensus between 
industrialists and certification authorities 

• For level 4 shuttle types on a given route (typically the Paris2Connect case): TRL 8 minimum 
is required (therefore, including trying to comply with current standards, even if they are 
difficult to apply). 

Requirements that can only be satisfied by engineering methods at at low TRL are excluded from this 
specification (for example requiring a high usage of formal languages to describe the ODD / OEDR to 
enable automatic reasoning and automatic test generations based on these reasoning are out of 
scope of this document). 

 

1.2.3.2 Expected level of safety demonstration 
The PRISSMA partenrs have identified three possible level of safety demonstration: 

1. Require formal proofs (<-> no tests required) of the safety of the expected functionality 
a. Hypothesis: We don't know how to formalize the requirements of certain AI functions 
b. Proofs of coverage of a target space in simulation 

2. Require objective evidence that the level of risk is verified at the level of confidence aimed 
for (Beta) (confidence level, not trustworthiness level) 
a. Specified safety level (hence specified risk level Alpha (GAME)) 
b. Obligation of results 
c. Proofs provided by the system provider 

3. Require a level of safety assurance 
a. Only trust in the efforts made in the proofs produced to demonstrate the safety of the 

STRA 
b. Obligation of means 
c. Level of security assurance (like cybersecurity) 

Decision: The scope of the PRISSMA method is the item 2: seeking for obligation of results for the 
safety demonstration  
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1.2.3.3 Scope of activites impacted 
1. Applicable for the verification/validation in the ascending part of the V cycle in the internal 

process of the ARTS supplier 
2. Applicable for the evaluation by a third-party authority knowing that the 

verification/validation has already been carried out by the system provider 
a. We assume that the STRA provider has already iterated enough that the probability of 

observing a dangerous behavior is almost nil 
b. We evaluate the proofs of the safety demonstration made by the provider with the two 

pillars: 
i. Audit of the entire process 
ii. The tests carried out by the third-party aim to give confidence in what has been 

audited 
Confirm that there is correspondence between the documentary analysis and the 
system 
Explore the "expert opinion" scenarios that seem insufficiently covered  

Decision: Item 1 scope is addressed by Pillar 1 (Confiance IA), and the scope of PRISSMA is Item 2 

1.2.3.4 Scope of autonomous vehicles 
The target for vehicle autonomy in the proof-of-concepts is indeed SAE 4, even though valid studies for SAE 4 
and 5 are entirely possible . 

 

1.2.3.5 System life cycle considered 
In the scope of this document, the system life cycle considers the following stages: 

 

 

Figure 1 ISO/IEC TR 24748-1 standard generic life cycle stages 

 

Life cycle stages Purpose 
Concept Define the problem space, characterize the solution space 

Identify stakeholders’ needs, explore idea and technologies, explore 
feasible concepts, propose viable solutions 
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Development Define/Refine system requirements 
Create solution description – architecture and design 
Implement initial system 
Integrate verify and validate the system 

Production Produce the system 
Inspect and verify 

Utilization Operate the system to satisfy stakeholders needs 

Support Provide sustained system capability 
Retirement Store, Archive or dispose of the system 

 

1.2.3.6 Open comments 
The following comments are still open in the V1 version of this document, and will be reviewed in 
another version: 
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1.2.4 Glossary 
 

Auditability 
 The extent to which an independent examination of the development and verification process of the 
system can be performed [DEEL]. 
 
Automated and Autonomous Road transport system (ARTS) 
 Technical system for automated road transport deployed on predetermined routes or traffic areas, and 
complemented by operational, maintenance, and service rules for the purpose of providing a public collective 
or private passenger road transport service, excluding transport subject to Decree No. 2017-440 of March 30, 
2017, relating to the safety of guided public transport . 
 
Automated and Autonomous Driving System (ADS) 
 A  vehicle  belonging to an ARTS. ADS means the hardware and software that are collectively capable of 
performing the entire Dynamic Driving Tasks on a sustained basis in a specific operational domain design [UE 
ADS act art 2, def 1] 
 
Confidence 
 Confidence represents, after a step of processing, combination, or merging/fusion of data, the 
degree of validity  of the result obtained for a specific function (detection, tracking, identification of 
an obstacle, detection and tracking of a road marking, etc.) 
 
Corner case 
 A corner case is a type of problem or situation that occurs only outside of normal operating 
parameters—specifically one that manifests itself when multiple environmental variables or 
conditions are simultaneously at extreme levels, even though each parameter is within the specified 
range for that parameter. 
 
Data Quality 
 The extent to which data are free of defects and possess desired features. [DEEL] 
 
Edge case 
 On the other hand, an edge case is a problem or situation that occurs when one parameter is at an 
extreme level . This could involve maximum or minimum inputs, or something unusual like a leap 
year date. The term "edge" comes from the idea of being on the 'edges' of what is considered normal 
or typical for the system. 
 
Evaluation 
 Evaluation refers to the process of assessing some properties of a system of interest. 
 
Explainability 
 Refers to the ability to explain why the model gave a certain prediction by providing information in a 
complete semantic format that is accessible to a novice. 
The extent to which the behavior of a Machine Learning model can be made understandable to 
humans [DEEL]. 
 
Fidelity 
 Closeness of agreement between the results of successive measurements of the same measure and carried 
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out under the same conditions of measurement. [ISO 3534-2:2006 Statistics — Vocabulary and symbols] 
NOTE 1 - Fidelity is generally expressed numerically by characteristics such as the standard deviation, variance, 
or coefficient of variation under specified conditions. 
NOTE 2 - The specified conditions may be, for example, repeatability conditions, intermediate precision 
conditions or reproducibility 
conditions (see ISO 5725-1:1994). 
NOTE 3 - Fidelity is used to define the repeatability, intermediate precision, and reproducibility of 
measurement. 
NOTE 4 - The term "measurement fidelity" is sometimes improperly used to denote measurement accuracy. 
 
Interpretability 
 Refers to the ability to understand how the model works by providing sufficient information about 
the AI model  as well as the data used. Interpretability is usually dedicated to machine learning or 
expert systems . 
 
OD 
 The Operational Domain (OD) describes what the environment of the system world actually is. 
Whereas the ODD refers to the system capabilities to handle operating conditions, the OD 
(Operational Domain) refers to the real environment of the system 
world, describing the real operating condition the system vehicle encounters [derived WP8.11] 
 
Operational Design Domain (ODD) 
 Means operating conditions under which a given [ARTS] is specifically designed to function, 
including, but not limited to, environmental, geographical, and time-of-day restrictions, and/or the 
requisite presence or absence of certain conditions  (like traffic or roadway characteristics for [ARTS] 
[derived from UE 2022/1426 - 19, generalized to any system]) 
ODD = espace de descripteurs de l'état possible du véhicule vs son environnement (WP8.6) 
 
Qualification 
 Qualification is "the process of evaluating the capability of a design, procedure, process, item, 
material, or system to perform its intended function(s) adequately and safely, under specified 
conditions" [MIL-STD-882E, Section 3.2.34]  
 
Rare event 
 In the context of machine learning, a "rare event" is an occurrence that happens much less frequently than 
normal events, often in an imbalanced classification context. Its prediction is challenging due to its rarity. 
Specific techniques are used to enhance the detection of these rare events despite the inherent data 
imbalance. 
 
 

Repeatability 
 Fidelity of measurement under a set of repeatability conditions. [ISO 3534-2:2006 Statistics — Vocabulary and 
symbols] 
 
Repeatability conditions 
 Conditions of measurement in a set of conditions that include the same measurement procedure, the same 
operators, the same measuring system, the same conditions of use, and the same location, as well as repeated 
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measurements on the same or similar objects over a short period of time. [ISO 3534-2:2006 Statistics — 
Vocabulary and symbols] 
 
Reproducibility 
 Fidelity of measurement under a set of reproducibility conditions. 
 
Reproducibility conditions 
 Conditions of measurement in a set of conditions that include different locations, operators, and measuring 
systems, as well as repeated measurements on the same or similar objects. [ISO 3534-2:2006 Statistics — 
Vocabulary and symbols] 
 
Resilience 
 The ability of AI functionality to maintain compliance with expected requirements in the presence of 
inputs outside its use domain (e.g., in the event of failure, intentional or  unintentional incident, 
cyberattacks and/or extreme stress).[REF]  
Ability for a system to continue to operate while an error or a fault has occured [DEEL]. 
 
Robustness 
 The ability of AI functionality to maintain compliance with expected  requirements in the presence of 
input data within the intended use domain. [DEEL white paper] 
Alternate def: The ability of AI functionality to maintain compliance with expected  requirements in 
the presence of input data within the intended use domain. [REF] 
(Global) Ability of the system to perform the intended function in the presence of abnormal or unknown inputs 
(Local) The extent to which the system provides equivalent responses for similar inputs. 
 
Validation 
 Validation is the process of verifying that a system or component meets its intended requirements and 
operates as intended. Validation includes testing, analysis, inspection, and demonstration to ensure that the 
system meets its specified requirements for performance, reliability, maintainability, and safety. [MIL-STD-
882E] 
 
Specificability 
 The extent to which the system can be correctly and completely described through a list of requirements. 
[DEEL] 
 
Verifiability 
 Ability to evaluate an implementation of requirements to determine that they have been met [DEEL, adapted 
from ARP4754A]. 
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2 ARTS DESIGN REQUIREMENTS QUALIFICATION 
All the inputs used in the PRISSMA method must be previously qualified. Within the scope of the 
PRISSMA merhod, qualification corresponds to the complete verification of the compliance of these 
inputs with the requirements applicable to them in this document. In most cases, this verification 
must be done by the ARTS supplier before initiating the certification of this ARTS by a competent 
authority for this certification (for both vehicle homologation and  complete ARTS certification). 

 

2.1 Identification of AI components, AI functions-of-interest, AI activities-of-interest 
 

One of the first objective  of the PRISSMA method is to verify that the functions and components of 
the ARTS based on AI technologies comply with all the laws & regulations requirements applicable to 
all the pathways, countries and areas where the ARTS will be operated .  The processes involved in 
any of the lifecycle of the ARTS (design, development, verification, utilization, maintenance, 
retirement) can also be impacted by the applicable laws and should be taken into account for the 
identification of the AI dependent elements (whether they would be physical components, 
requirements, technical data ).  

 

AI agent 
 An AI agent is automated entity that senses and responds to its environment and takes actions to 
achieve its goals [ISO/IEC 22989:2022] 
 
AI component 
 An AI component functional element that constructs an AI system artificial intelligence / AI: 
<discipline> research and development of mechanisms and applications of AI systems 
Note 1: Research and development can take place across any number of fields such as computer 
science, data science, humanities, mathematics and natural sciences. [ISO/IEC 22989:2022] 
 
Artificial Intelligence system/AI system 
 An AI intelligent system or AI system is an engineered system that generates outputs such as 
content, forecasts, recommendations or decisions for a given set of human-defined objectives 
Note 1 to entry: The engineered system can use various techniques and approaches related to 
artificial intelligence (3.1.3) to develop a model (3.1.23) to represent data, knowledge (3.1.21), 
processes, etc. which can be used to conduct tasks (3.1.35). 
Note 2 to entry: AI systems are designed to operate with varying levels of automation (3.1.7) [ISO/IEC 
22989:2022] 
 
AI tainted activity 
 Any activity in the lifecycle of an AI technology (including development phase, the production phase, 
the maintenance phase, or the decomissioning phase ) or any activity directly using AI technology . 
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AI activities-of-interest 
 The set of AI tainted activity for supplying the ARTS by the manufacturer (including for example 
design, training, validation) and possibly some activities that depends on those AI tainted activities. 
 
AI function-of-interest 
 In the scope of the PRISSMA Method, the functions-of-interest are the functions of the ARTS which 
depends on an AI component. Therefore, all the functions involved in a functional chain of the ARTS 
containing an AI component are functions-of-interest. 
 
 

Therefore, the first steps of the PRISSMA method consist of the following tasks : 

• Identification of the AI components and AI functions-of-interest 
• Identification of the AI tainted activities and AI activities-of-interest 
• Identification of the operational domain  and operational design domain of the ARTS 
• Identification of the applicable regulations requirements 

 

PM-937 - Identification of AI components and AI functions-of-interest 
The PRISSMA method shall verify that all the AI components and AI functions-of-interest have been 
identified by the ARTS supplier . 
Note 1: Verification may rely on simple declaration, audit or can rely on more intrusive methods 
Note: An update of the ARTS shall trig an update of this verification 
Rationale: The known set of AI functions-of-interest is to be known to assess the proper level of 
evaluation to be undertaken on the ARTS or to check that all the applicable regulations are identified. 
 
 

PM-1116 - Identification of ODD 
The PRISSMA method shall verify that the ODD of the ARTS has been identified by the ARTS supplier. 
 
 

PM-1139 - Identification of the AI functional domain 
The PRISSMA method shall verify that the AI functional domain of the AI functions-of-interest has 
been identified by the ARTS supplier. 
 
 

PM-1013 - Identification of OEDR and DDT 
The PRISSMA method shall verify that all the OEDR (Object-Event-Detection-Response) and the DDT 
(Dynamic Driving Tasks) have all been identified by the ARTS supplier . 
Note: OEDR could be classified as a functional requirement of the ARTS, but have been identified 
separately for clarification regarding autonomous vehicle state-of-the-art 
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PM-938 - Identification of AI activities-of-interest 
The PRISSMA method shall verify that all the AI activities-of-interest have been identified  by the 
ARTS Supplier. 
Note 1: An obvious activity-of-interest of the ARTS supplier are the Development and Safety 
insurance process of the ARTS 
Note 2: Verification may rely on simple declaration, audit or can rely on more intrusive methods 
Note 3: An update of the ARTS shall trig an update of this verification 
Rationale: The known set of AI activities-of-interest is to be known to assess the audit to be done on 
the development process. 
 
 

  



[L1.5] Annex requirement for PRISSMA method 

 

   

 

2.2 Qualification of applicable regulation requirements 
 

PM-939 - Qualified regulation requirements 
Based on the identified AI functions-of-interest ( PM-937 ), AI activities-of-interest ( PM-938) and 

operational domain ) PM-936) the PRISSMA method shall verify that the ARTS supplier has: 
 

1. Identified the list of all the applicable regulations to the ARTS and ARTS chain of suppliers 
(the ARTS supplier and the suppliers of the ARTS subsystems, recursively) and extract the 
applicable regulations requirements from this list. 

2. Conducted safety assessment on those regulations requirements to demonstrate possible 
inconsistencies and risk on the impact of the whole set of applicable regulation 
requirements . 

3. Traced the selected requirements with the applicable regulations they are extracted from 
4. Setup a process to regularly identify any update in the applicable regulations requirements 

Note: This activity should be addressed in WP8 "high level requirements" 
 
 

Example: From the European ADS act, the regulation specifies the performance requirements of level 
4 automation vehicle classified in the following 12 categories.  

1. Dynamic Driving Task (DDT) under nominal traffic scenarios 
2. DDT under critical traffic scenarios (emergency operation). 
3. DDT at ODD boundaries 
4. DDT under failure scenarios 
5. Minimal risk maneuver (MRM) and Minimal risk Condition (MRC) 
6. Human machine interaction for vehicles transporting vehicle occupants 
7. Functional and operational safety 
8. Cyber security and software updates 
9. ADS data requirements and specific data elements for event data recorder for fully 

automated vehicles 
10. Manual driving mode 
11. Operating manual 
12. Provisions for periodic roadworthiness tests 
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2.3 Qualification of ARTS Supplier's activities-of-interest 

2.3.1 Critical system engineering and safety insurance 
 

PM-989 - Critical system engineering activity 
The PRISSMA method shall verify that the ARTS supplier is able to demonstrate the compliance of its 
critical system engineering process with ISO 26262, SOTIF (ISO/DIS 21448) standards and applicable 
standards for the design and configuration management of critical systems. 
 
 

In addition to the AI activities-of-interest identified as basements of the method (see PM-938- 
Identification of AI activities-of-interest) the PRISSMA method has particular interest on the safety 
assessment process: 

 

 

Figure 2 : SOTIF vs ISO 26262 

 

PM-990 - Safety assessment on recorded hazardous situations 
The  PRISSMA method shall verify that the ARTS supplier is able to demonstrate the safety of the 
ARTS when the triggering conditions which led to  a hazardous behavior of the ARTS (accident or 
near-accident) are reproduced. 
 
 

PM-1006 - Compliance with particular PRISSMA requirements 
The  PRISSMA method shall verify that the ARTS supplier is able to demonstrate the compliance of its 
process with the relevant qualified requirements from the PRISSMA baseline for this ARTS. 
 
 



[L1.5] Annex requirement for PRISSMA method 

 

   

 

2.3.2 Cyber security and privacy assessment 
 

PM-916 - Cyber-security assessment activity 
The PRISSMA method must include security assurance activity to ensure mitigation of the impact of 
cyber-attacks , and in particular the following aspects: 

1. Verification of the resilience evaluation process by the AI suppliers or ARTS suppliers 
[REQ20221_050] 

Note: This security assurance activity shall cover the AI lifecycle data to show mitigation to reach an 

acceptable level of risks [ PM-811 - REQ202211_078 ] 
Note: The definition of this activity is covered by the PRISSMA WP5 project 
 
 

PM-991 - Data privacy preservation 
The PRISSMA method shall verify that the AI activities-of-interest  and particularly the data recording 
activities  of the ARTS supplier does not violate local laws on user's data (RGPD). 
 
 

2.3.3 Maintenance 
The STRA provider must have a monitoring activity for hazardous events recorded from the following 
sources, while maintaining traceability between the source of the recorded event and the event itself 
: 

• from internal STRA sources (vehicle sensors, infrastructure, or supervision) 
• from external sources (other STRAs using equivalent infrastructures) 
• accidentology 

 

PM-985 - Maintenance and feedback activity 
The PRISSMA method shall verify that the ARTS supplier implements maintenance and feedback 
activities achieving the following outcomes: 

1. Update the catalog of scenarios, including misuses, to be used for safety argumentation for 
the updates of the ARTS.   

2. Ensure the recording of pertinent vehicle data (sensor inputs, decisions) in order to provide 
feedback to the ARTS activities-of-interest in case of system's failure,  accident or near-
accident in order to fix the ARTS functions. 
 Note 1: The access to the recorded video by the local infrastructure to collect the potential 
hazardous behavior of an ARTS that has not detected near-accident or hazardous behavior 
should also be considered (to complete the set of data that can be used for post analysis). 
 Note 2: Sensors provided only AI-computed output, and not raw input, should be avoided 
(as this might hide the triggering condition recording) 
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3. Demonstrate rigorous configuration management practices for the update of the ARTS and 
AI components in addition to risks assessments and mitigations in the updates of AI 

components [ PM-799 - REQ202211_066, PM-797 - REQ202211_064] 

 
Note: This is implemented in WP7 
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2.4 Qualification of performance, safety & security objectives 
The performance, safety & security  objectives  come from three different sources: 

1. The qualified regulation requirements 
2. The ARTS supplier 
3. The PRISSMA method itself 

Only qualified objectives, qualified KPI, qualified metrics applicable to AI function-of-interest or AI 
activities-of-interest can be used in the PRISSMA method. The ones coming from the applicable 
regulation requirements are, by essence, qualified to be used in the PRISSMA method. the other shall 
follow a qualification process defined in the following sections. 

 

2.4.1 Performance, safety & security objectives from regulations 
PM-888 - Qualified performances objectives, KPI and metrics from regulations 
The PRISSMA method shall verify that the ARTS supplier has identified all the performances objectives, their 
associated KPI and metrics available from the applicable regulation requirements and applicapble to . All these 
objectives, KPI and metrics are qualified to be used in the PRISSMA method. 
Rationale: if performances objectives, KPI and metrics are defined in regulations, then they are 
applicable. 
 
 

PM-891 - Safety & Security objectives and risk measurements from regulations 
The PRISSMA method shall retrieve all the applicable security objectives & risks measurements from 
the applicable regulation requirements. 
Rationale: if security objectives and risk measurements are defined in regulations, then they are 
applicable 
 
 

PM-904 - Traceability with regulations 
All the requirements, objectives, KPI, measurements retrieved from applicables regulations shall 
included in the PRISSMA method with the traceability links to their statements in the regulations. 
Rationale: To enable periodic review and updates of requirements based on regulations, a precise 
traceability link is added to the requirements to enable impact analysis. 
 
 

PM-889 - Identification of missing performance, safety & security objectives from regulations 
The PRISSMA method shall verify that the ARTS supplier has conducted activities to identify the 
missing performance, safety and security objectives from the applicable regulations . 
Note: This identification shall target both the AI functions-of-interest and AI activites-of-interest.  
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2.4.2 Performance, safety & security objectives from ARTS supplier 
PM-897 - Verification of performance, safety & security objectives from supplier 
The PRISSMA method shall evaluate the performance, safety & security objectives provided by the 
ARTS supplier.  
Note: A list of evaluation activities shall be added based on the following examples: 

• Are the objectives compliant with applicable regulations ? 
• Are some objectives not addressed by applicable regulations ? If yes, are they 

accompanied by justification files that justifies  how they comply to the objectives, KPI and 
metrics qualities requirements of the PRISSMA method ? 

 
 

2.5 Qualified requirements baseline 
 

PM-940 - Qualified requirements baseline 
The PRISSMA method shall verify that ARTS supplier has completed the qualified regulation 
requirements with  additional requirements from safety and security assessment of the particular AI 
function-of-interest  of the ARTS. 
The set of qualified regulation requirements and the supplier's additional requirements makes 
together the "qualified requirements baseline".   
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3 ARTS EVALUATION INPUTS QUALIFICATION 
The elements specified in this section are used for the verification of the compliance of the ARTS with 
the qualified requirements baseline defined in the preceding section.  

 

3.1 Qualification of KPI, metrics and data 
PM-892 - Definition of additional KPI from regulations 
When no KPI is associated to a given performance objective from applicable regulations, the 
PRISSMA method shall associate a KPI to this performance objective. 
Any quantitative KPI used in the PRISSMA method shall have an acceptance threshold  (also know as 
"quality acceptance level" in sampling and measuring) and the PRISSMA method shall verify the 
relevance of the acceptance threshold.  
Note: How to demonstrate the chosen KPI is correct ? Should we complete the requirement to state 
that the selection process of the KPI shall be justified ? 
 
 
 

PM-893 - Definition of missing risks measurements from regulations 
When no risk measurement is associated to a given security objective from applicable regulations, 
the PRISSMA method shall associate a risk measurement to this security objective. 
Note: How to demonstrate the chosen risk measurement is correct ? Should we complete the 
requirement to state that the selection process of the risk measurement shall be justified ? 
 
 
 

PM-895 - Definition of additional metrics for KPI 
When a KPI has no associated metric for its evaluation, the PRISSMA method shall either: 

1. Define an metric associated to the KPI and justify the quality of the associated metric, when the KPI 
can be evaluated by the use of a metric (see § TBD for the requirements to qualify the metric) 

2. Define a method to evaluate the KPI and justify the quality of this evaluation method, when the KPI 
cannot be evaluated by the use of a metric 

3. Any quantitative KPI used in the PRISSMA method shall have an acceptance threshold (also 
know as "quality acceptance level" in sampling and measuring) and the PRISSMA method 
shall verify the relevance of the acceptance threshold. 

 
 

3.1.1 Metrics qualification requirements 
The objectives of this section is to define the requirements aimed at ensuring the quality of metrics and data 
used to evaluate and validate the performance and safety objectives of the ARTS using AI. 
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To verify the requirements of this chapter: AI experts will propose metrics of poor quality, and low-quality data. 
These metrics and data should be non-compliant with these requirements and be detected by the PRISSMA 
method. 

In the context of the PRISSMA Method, we define the terms "metric", "reference" and "observation" 
as follows: 

 

Metric 
 A metric is an operator qualifying the quality of an observation relative to a reference. [NoRef] 
 
 
Observation 
 An observation is a quantity produced at a given time by an agent (a human, a machine, a system 
composed of human and machine). [NoRef]  
 
 
Reference 
 A reference is a "base of a comparison, person or thing from which one defines, estimates, 
calculates, etc." [Larousse] or "the use of a source of information in order to ascertain something" 
[Oxford] 
By extension, AI lifecycle data are data used a source of in information during the processes for 
developing, evaluating, operating, maintaining and retiring ARTS. Common examples of references 
data in the field of AI based autonomous system are "annotated test dataset", "ground truth" or 
"maps". 
 
 

 

Only qualified metrics ( PM-908- Qualified metrics usage ) can be used in the PRISSMA method. 
Such metric are either: 

• Defined in an applicable regulation and are named "regulatory metrics" (see PM-888- 
Qualified performances objectives, KPI and metrics from regulations ) and qualified in the 

scope of the PRISSMA method (see PM-906- Regulatory metrics qualification activity) 
• Defined in addition to the normative metrics and are named "additional metrics" and 

qualified in the scope of the PRISSMA method (see  PM-907- Additional metrics 
qualification process ) 

 

PM-908 - Qualified metrics usage 
The PRISSMA method shall demonstrate that it uses only qualified metrics. 
 
 

PM-906 - Regulatory metrics qualification activity 
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To qualify a normative metric used in the PRISSMA method, the PRISSMA method shall verify that 
the definition of this metric is compliant with the applicable regulation at the date of the evaluation. 
This verification shall be executed on a regular basis to maintain up-to-date baseline of applicable 
normative metrics. 
Note: traceability to regulations shall also be maintained with the metric usage 
 
 
 

PM-907 - Additional metrics qualification process 
To qualify an additional metric (as opposed to normative metric) the PRISSMA method shall execute 
the follow activity for this metric: 

1. Metric specification: The metrics characteristics and properties must be specified. The 
requirements may involve characteristics such as accuracy, precision, linearity, sensitivity, 
and specificity of the method using a range of samples or standards.  

2. Metric selection: The selection of an appropriate metric may involve reviewing published 
literature, consulting with experts, and considering factors such as cost, speed, and 
complexity. 

3. Metric validation: The validation activities shall ensure that the chosen characteristics are 
suitable for the intended purpose. The selection of the persons realizing the validation must 
be justified (in particularly can they should qualified experts different from the persons who 
have specified the metric). 

4. Metric verification: The metric must be verified to ensure that it performs consistently and 
reliably in routine use. This may involve analyzing a set of control samples or using 
proficiency testing programs to assess performance. The selection of the people realizing the 
verification should also be justified. 

5. Metric monitoring and maintenance: Finally, the metric must be regularly monitored and 
maintained to ensure continued accuracy and reliability. 

 
 

PM-905 - Metrics relative to AI lifecycle data 
The  PRISSMA method shall demonstrate that the metrics relative to reference data use qualified AI 
lifecycle data as references. 
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3.1.2 AI lifecycle data qualification requirements 
Data used for a critical system is essential for ensuring the accuracy, reliability, and safety of the 
system. It plays a critical role in the design, development, testing, and maintenance of critical 
systems and should be selected and qualified carefully to ensure that it meets the specific 
requirements of the system. 

 

AI lifecycle data 
 Refers to the comprehensive data set used throughout the lifecycle of an Artificial Intelligence 
system (design, maintenance, utilization): 

1. Maps: Topographical maps and ground truth data from both simulated and real-world 
environments. 

2. Databases: Involves databases for learning, testing, and validation, supporting supervised or 
semi-supervised machine learning approaches. This data may serve as a hypothesis or a 
reference. 

3. Accident Statistics: Databases of accidents and statistics serve as a foundation for learning 
and improvement. 

4. Reference Data: Data used as reference for comparison 
 
 

PM-911 - Qualified AI lifecycle data usage 
The PRISSMA method shall verify that the ARTS supplier uses only qualified AI lifecycle data and that 
only qualified AI lifecycle data are used in the PRISSMA method. 
 
 
 

PM-909 - Qualification of AI lifecycle data 
To qualify a reference data, the PRISSMA method shall verify that the supplier of the data has 
followed a process to qualify the data, with at least the following steps: 

1. AI lifecycle data specification: The reference data constraints and properties ( PM-912  

and PM-913  ) must be specified, in compliance with any regulation or norm relative to 
the aspects reference by the data.   
 In particular, if the reference needs to evolve in a controlled manner over time, with a specific 
objective, it is in the specification of this reference that this should first be described. Example: a test 
base must evolve regularly to prevent the AI developer from knowing the test base, and thus the 
references associated with this test base will need to follow this evolution. 

2. AI lifecycle data selection or definition: The reference data must be extracted from a verified 
source or created to meet the specified objectives. 

3. AI lifecycle data validation: The validation activities shall ensure that the chosen 
characteristics are suitable for the intended purpose. The selection of the persons realizing 
the validation must be justified (in particularly they should  be qualified experts different 
from the persons who have specified the metric). 
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4. AI lifecycle data verification: The reference data must be verified to ensure that it performs 
consistently and reliably in routine use. This may involve analyzing a set of control samples 
or using proficiency testing programs to assess performance. The selection of the people 
realizing the verification should also be justified. 

5. AI lifecycle data monitoring and maintenance: Finally, the reference data must be regularly 
monitored and maintained 

 
 

PM-912 - Qualified AI lifecycle data properties 
The PRISSMA method shall verify that the AI lifecycle data supplier have at least specified, verified 
and justified the the AI lifecycle data has the following properties in the operational domain of the 
system of interest regarding the qualified performance, safety & security objectives applicable to this 
system-of-interest 

1. Suitability: The AI lifecycle data should be appropriate for the intended use and meet the 
specific requirements of the critical system. 
 Note: Suitability has been preferred over representativity  - The relevance of the data 
depends on the ODD application. This could mean representativity if our goal is to train a 
calibrated  model predicting balanced statistics. It can also mean exhaustively when we aim 
to over-represent rare phenomena and classes in order to improve the ability to detect 
them.  
 Note: In contrary, for a road map, the suitability is a synonym of representatitivy, because 
all the features (road signs, road marking, etc..) shall be present in the road map. 

2. Accuracy: The AI lifecycle data should be accurate and have a known level of uncertainty. 
The accuracy of the reference data should be justified regarding the performances of the 
ARTS and the applicable  regulations. 
 Note: For the position of a micro vehicle, a map with a 10 m precision is insufficient. If road 
map is used, it icludes accurate road map road features (road marking positioning and type, 
width of lane, number of lane, curvature, …) 

3. Acquisition Repeatability: The AI lifecycle data acquisition should produce consistent results 
when used repeatedly under the same conditions.  

4. Acquisition Reproductibility: The AI lifecycle data acquisition should produce consistent 
results when used by different operators/annotators or in different laboratories. 

5. Traceability: The AI lifecycle data should be traceable to a recognized standard or calibration 
process, or appropriate observation which ensures that the data is reliable and trustworthy. 

6. Stability: The AI lifecycle data should remain stable over time if no changes to the data is 
required, without significant changes in its properties, such as composition or physical 
characteristics.  

7. Robustness: The AI lifecycle data shall remain stable over time en in case of occurrence of 
expected disturbances, critical or hazardous events. 

8. Completeness & identification of missing data: The AI lifecycle data shall be complete with 
regard to the objects and space represented by these data. 
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Note: The resilience is not a property of the reference, but a property of the system using the 
reference (independantly of the nature of the system, it can be a technical system like an ARTS or a 
process like the AI training process). 
 
 

PM-913 - Additional properties for qualified annotated AI lifecycle data 

In addition to the properties listed in PM-912, annotated AI lifecycle data shall have the following 
properties: 

1. Include a target population specification which includes 
a. completeness analysis [REQ202211_074] 
b. rare event analysis: [REQ202211_075] 

2. Qualified annotation: see next requirements ... TBD briefly define annotation qualification 
process [REQ202211_077]  
Qualification of automatic annotation 
Qualification of human annotation: analysis to to limit cognitive bias [REQ202211_080]  // 
influence factors [REQ202211_045] // intra-annotator qualification, inter-annotator 
qualification// Identification of influence factors 

3. Justification of unbiased selection  

4. Qualified balance:  - adressed by delivrable 1.4 [REQ202211_075] ( PM-920  & PM-921 ) 
5. Qualified sampling: If the reference data are obtained by sampling a given data set, the 

requirements of the sampling methods are specified and are therefore included in the 
qualification process of the AI lifecycle data.   [REQ202211_081] 

Note 1: Like any AI lifecycle data, its properties must be specified so that AI lifecycle data can be qualified (PM-
909), so the standard classes are obviously defined. 
Note 2: An imbalanced dataset refers to any dataset where the proportions of various classes are not strictly 
identical. (Note: Class balance generally yields better results in machine learning.) It is crucial to quantify this 
imbalance. This consideration is only relevant when there is a notion of class or categorization involved. 
 
 

PM-925 - Qualification of human annotation 
The PRISSMA method shall verify that human annotations used for qualified CCR  reference data 
have followed a qualification process to asses the following properties of the annotation: 

1. Accuracy of annotations: an expert supervise the annotation 
2. Repeatability of annotations: qualification intra annotator 
3. Reproductibility of annotations: qualification inter annotator 
4. Traceability: record of the identity of the annotator 

Note: Example of human annotation qualification process: 

1. Define the annotation guide that the annotators will follow to limit human cognitive bias and justify 
how to control the influence factors and qualify this annotation guide 

2. Selection of annotators 
3. Training of annotators 
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4. Qualification of annotators by semantic and syntactic verification on a first sample of each annotator 
separately in order to eliminate or correct defects  

5. Possibly a second qualification phase on a second sample according to the results of the first 
qualification phase 6) Global annotation of the database 

6. Global annotation of the database  
7. Inter- and intra-annotator qualification on the complete database 
8. Adjustment of annotations following the qualification of the complete database (deletion of uncertain 

annotations... 

 
Note: Syntax verification involves scrutinizing the 'form' of the data to ensure it is computationally tractable, 
meaning it is coherent and uniform. 
Semantic verification, which can be of various types, includes manual checking of annotations made on a 
random sample for each annotation source. The objective is to ensure these are in alignment with the 
guidelines provided in the annotation guide. Intra-annotator verification aims to confirm an annotator's 
consistency in their annotation work over time. Inter-annotator verification, on the other hand, seeks to ensure 
that annotations among different annotators are mutually coherent. 
 
 

PM-946 - Qualified annotation guide 
the PRISSMA method shall verify that the rules defined in the annotation covers all the situations 
that the annotators should face, and verify the following aspects of the guide: 

• The rules shall be understandable 
• The guide has no cognitive bias itself 

Note: When the annotation tool is updated, the guide shall be updated.  
 
 

PM-915 - Continuous improvement of completeness of qualified AI lifecycle data 
The PRISSMA method shall have a dedicated process to evaluate and improve the completeness of AI 
lifecycle data. 
Note: this activity is defined in the WP6 and WP7  
Note: See reference on the rare event analysis 
 
 

3.1.2.1 Completeness of annotated AI lifecycle data 
PM-952 - Completeness analysis 
The PRISSMA method shall verify that the supplier of the AI lifecycle data provides a completeness 
analysis of the AI lifecycle data with regard to the total expected population of events/objects  
represented by the annotated AI lifecycle data 

• Elicitation of atomic event/object possible 
• Extrapolation by computational techniques (combinatorial combinations, etc...) 
• Identification of missing data 
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Note: Cf WP1.2 working group for completeness 
 
 
 

PM-953 - Unbiased selection justification 
The PRISSMA method shall verify that the supplier of the annotated AI life cycle data provides 
demonstration that no selection bias has been created during the creation of the annotated AI life 

cycle data reference  (cf PM-913-3) . 
 
 

3.1.2.2 Rare events and balance of annotated AI lifecycle data 
PM-943 - Rare events analysis 
The PRISSMA method shall verify that the supplier of the annotated AI lifecycle data provides a rare 
event analysis of this annotated AI lifecycle data with regard to the total possible population of 
events/objects represented by the annotated AI lifecycle data. 

• Elicitation of rare events and probability and severity assessment 
• Justification of the weighting of data  for balance or sampling 

Note: Update of the Rare event analysis based on utilization and maintenance feedback of the ARTS 
(WP7] 
 
 
 

PM-920 - Maximization of balance of annotated AI lifecycle data qualification 
The PRISSMA method shall verify that the AI lifecycle data provider has maximized the balance of the 
data .  
Note 1: The objective is to achieve a balanced distribution of data across all classes, where the number of data 
points in Class 1 is ideally equal to that in Class n. In instances where perfect balance is unattainable, it is 
imperative to minimize the imbalance. Any residual disparity must be duly justified, and solutions such as the 
implementation of focal loss should be employed to address the imbalance. 
Note 2: One method has been described in the deliverable 1.4 
 
 
 

PM-921 - Unbalanced annotated/supervised AI lifecycle data qualification 
If the balance of the CCR reference data is not possible, the PRISSMA methode shall assert that the 
provider has justify the impossibility to provide balanced CCR reference data, and justify the strategy 
implemented to use the unbalanced reference data for the IA component. 
Note: this activity is described in the deliverable 1.4 (zero shot, one shot, two shots, focal loss...)  
 
 
 

PM-942 - Qualified sampled annotated/supervised AI lifecycle data 
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If  the s-data is obtained by sampling an original source of data, the PRISSMA method shall verify: 

• Traceability vs original data 
• The sampling method has been analyzed to demonstrate that it does not add undesired bias 

to the original data (example: over-representing rare events in the sampling data is a desired 
bias to be able to detect those rare events). 

Note: It is essential to incorporate focal loss functions to address class imbalance in the context of 
detection.From a development point-of-view, the test set should be partitioned to enable testing on specific 
subsets related to this requirement. 
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3.2 Qualification of Simulator and Test sequencer 
 

Simulator 
 In engineering, a simulator is a hardware or software tool used to replicate the behavior of a physical system 
for testing, analysis, and design purposes. It allows engineers to experiment with various scenarios without the 
need for real-world testing. [IEEE Standard 1076-2017] 
 
Test sequencer 
 Is a tool responsible for the execution of test cases and the collection of test results. It provides an 
environment in which test scripts, whether automated or manual, are run to assess the behavior and 
functionality of a particular system of interest. 
 
Model 
 In science, a model is an intellectual or material construct designed to represent an aspect or process of 
reality, highlighting certain essential features while disregarding other details." -[Modeling and Simulation in 
Science and Mathematics Education (A. A. Berry, 2008] 
 
The Simulation is the result of the utilization of the Simulator. 

 

PM-998 - Qualification of Model & Simulation 
The PRISSMA method shall verify that all the models and simulation of the ARTS have followed a 
qualification process, comparable with the "credibility assessment framework" [UE ADS Act] or  any 
process demonstrating that the models & simulations used in the safety argumentation of the ARTS 
have been specified, verified, validated, documented, maintained. 
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Figure 3 Graphical representation of the relationship between the components of the credibility assessment framework to 
assess the M&S [1_4] 

 

The next points, listing particular aspects to be verified on particular technologies or components of the 
simulation, are out of the scope of this document. Rather, they should be listed as particular constraints of the 
prissma_arts project, or guidelines of the implemented PRISSMA method. Given the focus of the PRISSMA 
project on AI, these specific requirements are listed below to guide PRISSMA WPs that would use them. 

 

PM-999 - Particular properties for simulation qualification 
The PRISSMA method should verify the following properties of the simulation: 

1. Assertion of level of fidelity of the sensor (low/middle/high) [ PM-834] 
2. Assertion of level of fidelity of perception based on sensor with real data or simulated data, 

particularly in hybrid perception [ PM-822, PM-823 ] 
 The bias introduced by the two types of data (real / simulated) must be mastered. System outputs 
should be similar when using real or simulated data. This implies a level of representativity of the 
important simulated data. 
Example of verification: the scenario in real and simulation must have the same level of performance 

3. Availability of ground truth (reference ?) on the full duration of the scenario in simulated environment 
Element to verify: Ground truth (in simulation) are relative to labelling (objects, road, environment), 
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very accurate values for the key component state vectors, parameters of sources of disturbance 

(weather, light, dust, …) [ PM-828] 
 
 

  



[L1.5] Annex requirement for PRISSMA method 

 

   

 

4 ARTS QUALIFICATION 

4.1 Introduction 
 

The PRISSMA qualification relative to the safety demonstration of AI based ARTS relies on: 

1. The qualification of the AI activities-of-interest of the ARTS supplier 
2. The qualification of the applicable requirements and development artifact used for the 

evaluations 
3. The qualification of the AI components ( 4.2- AI component qualification requirements ) 
4. The qualification  of the ARTS AI functions-of-interest  (4.3- ARTS AI functions-of-interest 

validation requirements ) 

 

PM-882 - Scope of evaluation and validation 
The PRISSMA method shall evaluate and validate both AI functions-of-interest of ARTS system and 
AI components  along with supplier's AI activities-of-interest 
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4.2 AI component qualification requirements 

4.2.1 Qualification of AI Development process 
Any ARTS supplier is responsible of the qualification of the subsystems of the ARTS. The suppliers of 
the subsystems of the ARTS are, in their turn, responsible for the qualification of their component, 
including the verification of the qualification of the AI component's supplier . 

Three scenarios may arise: 

• Either the AI component supplier agrees to be audited by the subsystem supplier , in which 
case the vehicle manufacturer is obligated to follow the recommendations described in the 
following requirement. 

• Alternatively, if the AI component supplier refuses the audit by the subsystem supplier (to, 
for example, preserve industrial know-how), the qualification of the AI component's 
development process will then need to be conducted by a third-party organization, 
accredited to carry out audits of critical system processes. This third-party will provide all the 
proof elements listed below to the subsystem supplier, who can then provide them to the 
authority responsible for subsystem certification. 

• In the event that an AI component supplier refuses any form of process qualification the 
component cannot be used in the vehicle. 

 

AI functional domain 
 The domain of inputs the AI components with it's expected outputs. 
 
 

PM-956 - Qualification of databases 
The PRISSMA method shall verify that the databases used in the whole life cycle of AI components 
comply with the following requirements: 

1. They comply with annotated AI life cycle data qualification requirements ( PM-910 ). 
2. Demonstrate a coverage of the qualified scenario library  and qualified AI functional domain  

of the AI function-of-interest  the AI component  belong to,  using a qualified metric . 
 Note: metrics coverage is with regard to the performance, safety & security objectives of 
the ARTS (cf §2.5) 

3. The test databases used for the whole life cycle of the AI component are independent of 
other databases (training and validation). 
Independance: independence between two databases means that data from one database is not 

found in the other  [REQ202211_08] 
4. Verify that the provider of the IA component can demonstrates evidences about the use of a 

strategies to minimize errors in the center or tail of the distribution of the training and 
validation database 

 
 



[L1.5] Annex requirement for PRISSMA method 

 

   

 

 

PM-996 - Qualification of AI component development process 
The PRISSMA method shall verify that all the AI component of the ARTS have followed a qualification 
process, comparable with the following one: 

1. Inputs qualification: All the inputs of the process must be qualified, which particularly 
targets the artefact//basic elements listed in the sections 2- ARTS design requirements 
qualification  and 3- ARTS evaluation inputs qualification of the present document: 
a. Requirement baselines, OD, ODD, functional domains, Pathway description, expected 

performance, safety & security objectives, KPIs, metrics and AI lifecycle data must be 
qualified 

b. All the AI lifecycle data used in the process must be qualified, therefore all the inputs of 

the AI functions must be qualified [ PM-909 ][REQ202211_059] 

c. All the databases used must be qualified [ PM-956] 
d. the expected performance must be specified including the acceptable accuracy on this 

performance. This criteria must be tied to the qualified performance, safety & security 
objectives of the AI-function-of-interest of the ARTS to be qualified. 

2. AI specification: Identify the functional and performance requirements, as well as any 
regulatory and safety requirements that must be satisfied. 
 AI functional domain: the requirements must define the functional domain of the AI 
component and the expected outputs 
 Post-treatments: the requirements must define the integrated or suggested post 

treatments required to use the AI, with description of raw prediction decoding mode [ PM-
806 - REQ202211_073] 
 Interface requirements: the requirements must define the input/output data formats of the 
IA component, and, in a broader way all the constraints related to the specification of its 
interfaces [ PM-805 - REQ202211_072, PM-803 - REQ202211_070] 
 Uncertainty and uncertainty propagation: what is the expected uncertainty of the AI 
component and how this uncertainty is propagated if many AI stages are used in the AI 
component 

3. Training, Design and development: Once the requirements have been defined, the AI must 
be designed and developed in accordance with these requirements. This may involve 
developing software, defining the datasets, training of AI and performing test. 
The supplier can demonstrate over-fitting / under-fitting mitigation process, to avoid bias in 
the training and validation process [REQ202211_060]. 
If RGPD applies, the learning process must prevent tracing back to the original data 
[REQ202211_067] 
Evaluation protocol includes metrics, databases, methods used, test and test systems used. Justify the 
chosen test protocol. 
 A replay (same metrics, same test data sets) of the evaluation by another independent actor must 

lead to the same results [ PM-773]. Test systems should also be qualified test means [ PM-770] . 
 The PRISSMA method must verify that the provider of the AI component has used convergence 
measurement techniques during its learning process  [REQ202211_063]. 
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 Demonstrate repeatability of evaluation and identify all the unrepeatable cases [REQ202211_038] 
 Demonstrate reproducibility and justify all the unproducible  cases (cf metrics fidelity  / acceptable 
jitter in the mectric ?) [REQ202211_037] 
 In Cyber Security, reproducibility is almost never possible and rely therefore on justification 

4. Verification and validation: The next step is to verify and validate the AI to ensure that it is 
compliant with the defined requirements. The evaluation shall be realized by different 
people involved in the specification, design and production. The verification and validation 
steps shall be reviewed. 

5. Documentation: This includes documenting the AI requirements, design specifications, 
testing results, and other important information. 

6. Certification and accreditation: This involves demonstrating that the AI meets all regulatory 
and safety requirements. 
The database used for these evaluations shall be kept secret to the ARTS supplier's, to 
prevent ARTS supplier for specifically training the AI components to success to the 
evaluations done during these tests [REQ202211_071] 

7. Maintenance and monitoring: Finally, once the AI is in use, it must be regularly maintained 
and monitored to ensure continued safe and reliable utilization. 

8. Traceability: of all the definition data and artifact used in the AI design process 
9. Independence of the teams: Demonstration of independence and traceability of 

development tasks versus the evaluation task, and justification of the skills and knowledge of 
evaluation team with regard to the AI functional domain . 

 

4.2.2 AI Properties to be evaluated 
An important aspect of AI component qualification is to demonstrate the compliance of its functional 
domain with the one expected during the specification of the AI, with a focus on the outputs at the 
limits of this functional domain. 

 

The expected performances have been qualified prior to the evaluation of the AI component-of-
interest (see section 2.4- Qualification of performance, safety & security objectives). 

 

Considering that AI can be highly non-linear, the figure below summarizes the possible domains to be 
considered in this characterizations. 
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Figure 4 Nominal vs Robustness vs Resilience [Adapted from DEEL] 

 

4.2.2.1 Performance & convergence definition 
Reminder  : the evaluation of the safety of an AI based system shall rely on the usage of qualified AI 
lifecycle data . 

 

PM-924 - Qualified performance, safety & security objectives verification 
The PRISSMA method shall verify that the provider of the AI components has verified that the AI 
components meets the qualified performance, safety & security objectives during all the life cycle 
phases  of the AI component (example: learning process, validation).  
 
 

PM-918 - Center/Tail distribution error minimization strategy 
The PRISSMA method shall verify that the provider of the IA component can demonstrates evidences 
about the use of a strategy to minimize errors in the center or tail of the distribution in the learning 

process (cf PM-956- Qualification of databases - 4). 
Note: this activity is defined in the deliverable 1.4 
 
 

PM-923 - Convergence measurement 
The PRISSMA method must verify that the provider of the AI component has used convergence 
measurement techniques during its learning. 
Rationale: Explains how the supplier has evaluated the performance of the AI component 
 
 

4.2.2.2 Limits, Robustness & Resilience 
 

PM-1035 - AI robustness qualification 
The PRISSMA method shall verify that the supplier of the AI component-of-interest has provided a 
qualification of the robustness of its AI component providing: 
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1. Stability analysis (a slight variation of the input parameters should not cause a strong 
variation of the outputs) 

2. Analysis of the performance at the limits of the ODD (critical or precritical scenario analysis) 
3. Analysis of the operating range (nominal values, possible disturbed values, influencing 

factors and parameters) 
4. Characterization of AI functional domain outside robustness work domain . 
5. Characterization of impact of adversarial attackes (cyber attack) 

Note: The SOTIF approach can be used to find pertinent parameters for the characterization of non 
linear behaviors and robustness 
 
 

PM-988 - AI resilience qualification 
The PRISSMA method shall verify that the supplier of the AI component-of-interest has provided a 
qualification of the resilience of its AI component providing: 

1. Characterization of AI functional domain outside robustness work domain. 
2. Extreme values 
3. Values outside of permitted inputs values (typically out of distribution data) 
4. Adversarial attacks (cyber attack)  

Note: The SOTIF approach can be used to find pertinent parameters for the characterization of non 
linear behaviors and resilience 
 
 

PM-914 - OOD metric for qualified annotated AI lifecycle data 
The PRISSMA method shall evaluate the capability of an AI components-of-interest to detect Out of 
Distribution Data 
Note: this activity is defined in the deliverable 1.4 
 
 

4.2.2.3 Confidence index 
In various types of AI models, a confidence index (or confidence score) can be used to indicate the 
probability that a given prediction or classification is correct. This is common in machine learning 
algorithms such as logistic regression, support vector machines (SVMs), or neural networks. The 
confidence index can help in decision-making by providing an estimate of the reliability of a 
prediction. 
Confidence scores can be used in perception algorithms to estimate the likelihood that a detected 
object is of a certain type (e.g., a pedestrian, a bicycle, or another vehicle). Such scores can be used 
to inform decision-making in control algorithms. 

 

PM-961 - Confidence index 
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The PRISSMA method shall verify that AI components-of-interest also provide a Confidence Index on 
their output and a confidence index justification document that details: 

1. What are the specifications of this confidence index (how is it computed, what is it's 
purpose) 

2. What are the expected performances of this index 
3. How to interpret the different values (range from very good to very poor confidence) 

Example: Detection tracking of road markings can provide up to many confidence indexes 
1st stage confidence: primitive extractors on the belonging of the pixel to a road marking 
2nd stage confidence: occurrence of the tracking - the more the road marking has been positively 
followed, the better on the overall confidence 
 
 
 

4.2.2.4 Interpretability 
PM-994 - Logging system 
The PRISSMA method shall verify that each AI component is able to log it's output's result based on 
it's input, and backed up on a duration depending on the criticality of the function. 
Rationale: Enable post-analysis in case of incident or accident 
Questions: What is the recording frequency? What is the retention period? Do all components need to log? All 
the time? 
Discussion: Confirm with maintenance phase (WP7), that STRA is responsible for recording parameters. Each AI 
component should log input, output information, explainability, etc. The STRA provider must justify the 
frequency... (see UE ADS, and UN-R160 Event Data Recorder which are covered by the qualification of 
regulatory requirements. The following requirement is a reminder.) 
 
 

PM-1029 - AI component Interpretability functions and justification. 
The PRISSMA method shall verify that the AI supplier's has provided the interoperability justification 
documentation that demonstrate the interpretability of the AI ouputs by domains experts, including 
the justification of any funtion related to the supply of information required for the interpretation of 
the outputs (like a logging sytem  or additional information  about the output). 
Example: Detection of dogs or cats, adding pixels to an image to indicate which pixels have allowed to 
discriminate between dogs and cats. 
 
 

4.2.2.5 Testability 
testability: The "testability" of equipment [...] can be defined as its ability to be tested so that both the 
equipment manufacturer, [...] user services, and those responsible for providing logistic support can: 

• Verify its performance and proper functioning, 
• Detect its failures, 
• Identify the causes of its failures, 
• Remedy its failures. 



[L1.5] Annex requirement for PRISSMA method 

 

   

 

Within reasonable delay and costs. 

 

PM-1036 - Testability inputs/outputs 
The PRISSMA method shall verify that the AI component supplier's has provided the input/outputs 
point to enable the required qualification level of the AI-Function of interest using this AI component 
in the rest of the PRISSMA method (including therefore certification, homologation, maintenance 
and utilization of the ARTS).  
Example: If the interpretability require additional outputs for the demonstration, the outputs shall 
be available 
Example: If the homologation of the AV requires additional inputs, for example to enable augmented 
reality tests in closed road, the inputs must be present (GPS alteration can be also required BUT pay 
attention to cybersecurity) . 
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4.3 ARTS AI functions-of-interest validation requirements 
 

4.3.1 ODD, OEDR and Scenario Qualification 

4.3.1.1 Qualification of Pathway description and ODD 
Considering that the pathway description is a set of parts of the pathway considered to have the 
same properties, as identified in the ODD grammar, then those properties are considered the same 
ways as annotation for AI lifecycle data (see SSS-3.1.2-5- Additional properties for qualified 
annotated AI lifecycle data) . 

 

PM-1022 - Qualification of pathway description 
The PRISSMA method shall verify that any parts of the pathway description and ODD, which have 
been annotated, comply with the qualification requirements for annotated AI lifecycle data.  All the 
other parts shall comply with the qualification requirements of AI lifecycle data. 
 
 

PM-936 - Qualification of the ODD 
The PRISSMA method shall verify that all operational design domain has been completely defined by 
the ARTS Supplier,  with particular attention on the aspects of this operational domain linked with a 
particular regulation. 

1. ODD specification: The ODD must be specified, in compliance with any regulation or norm 
relative to the aspects represented by the ODD  [like pas1883].  

2. ODD definition: The ODD must be defined, created to meet the specified objectives. 
3. ODD validation: The validation activities shall ensure that the chosen characteristics are 

suitable for the intended purpose. The selection of the persons realizing the validation must 
be justified (in particularly they should be qualifie experts different from the persons who 
have specified the ODD). 

4. ODD verification: The ODD must be verified to ensure that it performs consistently and 
reliably in routine use. This may involve analyzing a set of control samples or using 
proficiency testing programs to assess performance. The selection of the people realizing the 
verification should also be justified. 

5. ODD monitoring and maintenance: Finally, the ODD must be regularly monitored and 
maintained   

Note: CF 8.9(state-of-the art) and 8.11(Taxonomy  ODD PRISSMA) 
Example: Public/Private zone, country localisation, transport sector (railway, road, open road..) 
 
 
 

PM-1046 - ODD taxonomy compliance 
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The PRISSMA method shall verify that the OD and ODD grammar are compliant to the applicable 
standards relative to the ODD definition. 
Note 1: This aspect should already be covered by the requirements elicitation process defined in 
section 2- ARTS design requirements qualification, but is reminded here as it is key for the 
comprehension of the objective of this method. 
Note 2: For information, the pas1883 states the following requirements 

1. Based on the [used] taxonomy [...], an ODD definition shall be developed and agreed by 
stakeholders, either individually or in consultation, for the safe operation of the ADS [or 
ARTS]. 

2. The ODD definition shall be extensible in a way that allows new attributes or details to be 
added as a result of stakeholder consultation. 

3. The abstraction hierarchy used for the ODD definition shall be at the discretion of the 
stakeholder. Irrespective of the abstraction level chosen, stakeholders shall specify the ODD 
attributes used for informing the safety case for the ADS [or ARTS]. 

4. A stakeholder who defines an ODD choosing a higher abstraction level shall comply with all 
the sub-attributes, even if they have not been explicitly mentioned in the ODD definition. 

5. While performing the DDT, the ADS shall monitor itself and the ODD attributes for the safe 
operation within the defined ODD, which includes performing the minimal risk maneuver 
(MRM). 

6. As part of the process to show compliance with the defined ODD, ADS developers shall 
demonstrate test procedures for the defined ODD attributes. 

 
 

PM-1019 - Qualification of ODD vs OD 
The PRISSMA method shall verify that the ARTS supplier can demonstrate the inclusion of the OD 
inside the ODD or demonstrate that all the spaces of the OD outside the ODD have been identified 
and addressed. 
For each space of the OD outside the ODD the ARTS supplier shall justify how the ARTS remains 
secure and functional. 
 
 

4.3.1.2 Qualification of the OEDR 
 

PM-1048 - Qualification of the OEDR 
The PRISSMA method shall verify that all OEDR has been completely defined by the ARTS Supplier, 
with particular attention on the aspects of this operational domain linked with a particular 
regulation. 

1. OEDR specification: The OEDR must be specified, in compliance with any regulation or norm 
relative to this aspect. 

2. OEDR definition: The OEDR must be defined, created to meet the specified objectives. 
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3. OEDR validation: The validation activities shall ensure that the chosen characteristics are 
suitable for the intended purpose. The selection of the persons realizing the validation must 
be justified (in particularly can they should qualified experts different from the persons who 
have specified the metric). 

4. OEDR verification: The OEDR must be verified to ensure that it performs consistently and 
reliably in routine use. This may involve analyzing a set of control samples or using 
proficiency testing programs to assess performance. The selection of the people realizing the 
verification should also be justified. 

5. OEDR monitoring and maintenance: Finally, the OEDR must be regularly monitored and 
maintained 
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4.3.2 ARTS Qualification (Sim/Closed Road/Open Road) 
In the scope of the PRISSMA method, the main objective of the safety demonstration is to verify that 
the ARTS is at least as safe as human in equivalent situation (GAME principle). This demonstration 
shall therefore rely on an objective criteria that remains the same in all the situations. The proposal is 
to demonstrate that the ARTS has no accident resulting in severe or fatal injuries  after being 

operated on a large enough distance or duration (see PM-1051- Qualified safety objective metric) 
with appropriate justification of the coverage of the evaluation domain, which means the 
demonstration has been realized on many different situations (see PM-1053- Statistical 
distribution justification). Ideally, the qualification should also enable to verify that the ARTS has no 
repeated incidents. 

 

ED: Evaluation Domain 
 
The evaluation domain is the space resulting from the combination of the following spaces: 

• The ODD, including:  
• The road infrastructure (Pathway) and the events that can reasonably occur on this 

pathway (both environmental conditions and actors events) 
• ARTS capabilities limitations with regards to the possible events and environmental 

conditions (for example, if the ARTS cannot be operated safely at night, then night 
utilization is out of the ODD) 

• ARTS functions and requirements   
• OEDR (ARTS automatic driving requirement, being AI or not) 
• Other system events (risks, failures, functional insufficiency, triggering conditions)  

 
 

Hypothesis 1: 
 The vehicles of the ARTS must operate safely even if the other subsystems like the infrastructure or 
the supervision of the ARTS are dysfunctional.  
This hypothesis as an impact only on scenarios where one components of the infrastructure has a 
failure. For example, if connected traffic lights are used for the utilization of the ARTS, but the ARTS 
must remains safe when the traffic lights are dysfunctional. 
 
Hypothesis 2: 
 Any vehicle with SAE 4 level is meant to operate safely inside it's ODD (including its pathway). As the 
infrastructure is a part of the ARTS, then the pathway is considered inside the system-of-interest.  
 
 

4.3.2.1 Vehicle AI autonomous driving homologation 
 

PM-1073 - Safety requirements application 
The PRISSMA method shall verify that the ARTS supplier has provided safety justification document 
containing the following information : 
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1. The evaluation inputs (see  3- ARTS evaluation inputs qualification, 4.2- AI component 
qualification requirements , 4.3.1- ODD, OEDR and Scenario Qualification ) 

2. The test campaign specification and coverage analysis versus the evaluation domain 
3. The qualification documents for the simulator and the test sequencer  used to realize tests in 

simulation 
4. The safety objectives metric and the test runs coverage versus this safety objective metric of 

the autonomous driving functions relying on AI functions-of-interest  
5. The identification and coverage % of the test runs on test track versus the test realized in 

simulation 
 Rationale: to give confidence of the correlation between the simulation and the real 
behavior of the vehicle 

6. The identification and coverage % of the test runs on open road versus the test realized in 
simulation 
 Rationale: to constitute a dataset for scenarios encountered on open road and therefore 
provide proof on the validation of the ARTS 

7. The statistical distribution justification of the realized test versus the evaluation domain 
 
 

PM-1051 - Qualified safety objective metric 
The PRISSMA method shall verify that the ARTS provider has defined the safety objective metric in 
compliance with the state-of-the art and applicable regulations where the ARTS is operated  (see 2.2- 
Qualification of applicable regulation requirements) 
Note 1: This metric can be expressed in a distance without fatality (like 275 million fatality free miles) 
or in hour of travel without fatality (like 10^-7 fatality per hour).  
 
 

PM-1065 - Qualification of test runs 
The PRISSMA method shall verify that the ARTS supplier has performed  enough of the necessary, 
sufficient and representative tests  to demonstrate the safety of the ARTS  on a sufficient distance (or 
duration) regarding the safety objective metric qualified announced. 
Note 1: This requirement probably implies that huge amount of tests are done with simulation on 
qualified simulator 
Note 2: Due to the statistical distribution justification requirement or in a broader way to increase 
safety demonstration, the total distance / duration covered by the test has high probability to 
overflow the initial safety objective metric. 
Note 3: The overall safety demonstration relies also on the qualification of the inputs, safety analysis 
and risks mitigation strategies, all these points are covered  in all the previous sections of this 
document). 
 
Example 1: According to the National Highway Traffic Safety Administration (NHTSA) in the United 
States, in 2019, there were approximately 1.1 deaths per 100 million miles traveled (about 160 
million kilometers). This equates to approximately 0.0000069 deaths per kilometer traveled.  To 
demonstrate that fully autonomous vehicles have a fatality rate of 1.09 deaths per 100 million miles 
(a reliability of 99.9999989%) with a 95% confidence level, the vehicles would need to be driven 275 
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million fatality-free miles (440 million fatality-free km) [Sources: National Highway Traffic Safety 
Administration (NHTSA), "Driving to safety: How many miles of driving would it take to demonstrate 
autonomous vehicle reliability?" by N. Kalra and S. Paddock.] 

Example 2: The example of acceptance criteria indicated in the footnote relies on a safety threshold 
(10-7 fatalities per hour of operation) based on the analysis of current EU road accidents aggregated 
data. Such threshold is suitable for the market introduction of ADS based on similar services as the 
ones which the aggregated data refers to; i.e. buses, coaches, trucks and cars. Therefore, a more 
suitable reference threshold could be derived specifically for each use-case, also considering the 
defined operational design domain (ODD) [UE ADS Act].   

Example 3: The GAME principle (Globally At Least Equivalent) applies to Automated Road Transport Systems 
(ARTS). It aims to ensure that the overall safety level of an ARTS is at least equivalent to that of existing or 
comparable systems. The principle considers users, operating staff, and third parties. It allows for some 
flexibility by permitting a "system" approach to safety. The guide serves to formalize expectations and provide 
a framework for industry professionals.[Sources STRMTG GAME guide]. 

 

PM-1053 - Statistical distribution justification 
The PRISSMA method shall verify that the ARTS supplier has provided the justification of the test run 
distribution within the evaluation domain. 
Note 1: Unless required by an applicable regulation (see PM-939- Qualified regulation 
requirements ) the use of scenario approach is a mean  to give confidence in this justification 
(see 4.3.2.2- Qualification of Scenario) 
Note 2: One of the impact of this requirement could be the increase of the safety objective 
metrics (for example: cumulating 200 Million fatality free miles on highway, and 100 million fatality 
free miles on crossover , etc, etc...) eventhough the method for the allocation of global objective to 
different parts of the pathway is not available at the state-of-the-art.  
 
 

PM-1068 - Qualification of the simulator 
The PRISSMA method shall verify that the ARTS simulator, provided by the ARTS supplier, has the 
following properties: 

1. The whole simulator has been provided by a qualified process (specified, designed, 
evaluated, verified, validated by third party) 

2. The validation shall includes a correlation/consistency justification campaign executed with 
the real vehicles of the ARTS on test tracks and (or) in operational pathway that indicates at 
least: 
a. usage of qualified correlation/consistency metrics between the simulated ARTS behavior 

and the real ARTS behavior (digital twin) 
b. % coverage of the tests passed on the real system versus the tests passed through 

simulatio 
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PM-1075 - Qualification of the test engine 
Any evaluation made in the PRISSMA method and relying on tests ran with the simulator  of the 
ARTS  shall use qualified test sequencer that: 

1. Enable the PRISSMA evaluation to set it's own test campaign parameters and observe the 
results of the tests, independently from the one realized by the ARTS supplier 

2. Is different from the test engine used by the ARTS supplier or has been certified by an 
independent organisation 
Rationale: to avoid any bias of the test campaign resulting from a possible bug in the test 
sequencer 

 
 

PM-1070 - ARTS Vehicle Evaluation 
The PRISSMA method shall realize the following evaluations on the AI autonomous functions of the 
vehicle: 

1. Realize some tests on the simulator using a qualified test engine 
2. Realize tests on test tracks and open road if possible 
3. Produce  the following metrics 

a. The % of the test space covered by track tests (confidence level) 
b. The % of the test space covered by tests in the operational environment (the % will be 

very low, and related to test permissions on the final route) 
c. The % correlation between the real VEH behavior VS simulated VEH behavior 
d. The % correlation between the results obtained by the ARTS supplier in simulation and 

the results obtained during this evaluation  
 
 

4.3.2.2 Qualification of Scenario 
This section is under construction  

Recommended at the national and international levels for the design and validation of autonomous 
vehicles. 

• NATM (GRAV, WP29 UNECE): scenario database (almost pillar) 
• DGITM: GT scenarios. 

Allows for representing the complexity of interactions between the system and its environment 
dynamically and in connection with the AI blocks used. Structuring approach for PRISSMA: 

• To link the system level and the AI block 
• To link the simulation approach (WP2), controlled environment (WP3), and real environment 

(WP4) 
• To enable a coverage evaluation during the validation of the ARTS through the usage of a 

"scenario library" 
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Scenarios describe the contexts that autonomous vehicles (and their AI blocks) will face during 
utilization=> They are exogenous to the system. 
For each logical scenario, the list of Use Cases describing each possible behavior of the system must 
be defined (with the corresponding value ranges for each parameter).  
The test strategy is built in the form of a test protocol represented by a set of test cases. Each test case is the 
instantiation of a situation with specific parameters. To generate useful Test Cases for validation in 
simulation and the associated stop criteria, it is necessary to associate the expected behavior (DDT - 
Dynamic Driving Task / OEDR - Object and Event detection and Response implemented in the ART). 

Challenges of the scenario approach: 

• Numerous inputs to consider: System, components, ODD, OEDR, QoS, Safety, environment, 
actors, extras, etc. 

• Multiple concrete approaches at the national and international levels (see draft L1.5) not yet 
converged with each other. 

• What is the use of scenarios in design? 
• What is the use of scenarios in validation? 
• What is the use of scenarios in approval/certification? 
• Complementarity of analytical and experimental approaches. 
• For AI, what use in learning? What use in testing? 

 

Scenario 
 A scenario is a temporal sequence of action/events (edges) and scenes (nodes). [Ulbricht & al] 
 
Nominal traffic scenarios 
 Means reasonably foreseeable situations encountered by the ADS when operating within its ODD. 
These scenarios represent the non-critical interactions of the ADS with other traffic participants and 
generate normal operation of the ADS [(UE] 2022/1426 - 19].  
 
Critical scenarios 
 Means scenarios related to edge-cases (e.g. unexpected conditions with an exceptionally low 
probability of occurrence) and operational insufficiencies, not limited to traffic conditions but also 
including environmental conditions (e.g. heavy rain or low sunlight glaring cameras), human factors, 
connectivity and miscommunication leading to emergency operation of the ADS [(UE] 2022/1426 - 
20]. 
 
Failure scenarios 
 Means the scenarios related to ADS and/or vehicle components failure which may lead to normal or 
emergency operation of the ADS depending on whether or not  the minimum safety level is 
preserved  [(UE] 2022/1426 - 21].  
 
 

Note: The definition of "Failure scenarios" are still under discussion at the moment of issuance of this 
document. 
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The goal here is to verify the correct implementation of fallback modes specified by the 
manufacturer, not to verify that we are safe. In the context of an SAE Level 4 autonomous system, all 
sensors and actuators should be redundant. A failure should therefore lead to a loss of redundancy 
and a DDT Fallback. 
Problem: When we talk about failure, we are talking about the state of the system and not an 
element of the environment. So, what do we mean by "failure scenario" at the ARTS level? 
It might be more relevant to only keep the "critical scenarios" and to consider in these critical 
scenarios the failures (in the sense of ISO26262) whose consequences could lead to a critical scenario 
(once risk reduction measures are implemented). 
 

 

Functional Scenario 
 Functional Scenario is the predecessor of a group of scenarios describing the same situation in 
different events that provides a high level of description. 
 
Logical scenario 
 A logical is one situation of a functional scenario, i.e. each scene, action or event are set. The 
temporal sequence, the logic of the scene and the action or event is set from the initial scene to the 
final scene. An interval is defined for each parameter. It is used to describe a behavior or a test. 
 
Concrete scenario 
 A concrete scenario is an instantiation of a logical scenario giving exact values of each parameter. It 
is used to describe a test case or to measure/extract a real driving occurrence 
 
 

 

Figure 5 Functional, Logical and Concrete scenario 

 

 



[L1.5] Annex requirement for PRISSMA method 

 

   

 

 

 

PM-964 - Qualification of functional scenario 

If a scenario approach is used for the justification of the statistical distribution (see PM-1053- 
Statistical distribution justification), the PRISSMA method shall verify that the ARTS supplier has 
based this elicitation on  a qualified process including specification, traceability, verification, ... and in 
particulary, addressed the following aspects of scenario elicitation:   

1. Kinds of scenario in the scope 
a. Nominal scenario - Covering all the functions and functional requirements from the 

applicable regulation requirements . Compliance of AI functions-of-interest ( PM-937) 

to applicable regulation requirements ( PM-939) falls in nominal scenario scope 
b. Critical Scenarios: 

Notably the edge-cases ( PM-781) 
 Verify minimization of effect of risk occurrence  at acceptable level (Req_FMEA) Failure / 
Critical Scenario  

Situations where applicable regulations requirements contradictions ( PM-842) Critical 
Scenario 
Example: rouler sur la bande d'arrêt d'urgence OU impact fort dans le véhicule avant 
(multimodal, multiactor incertitudes & constraints [REF])  

c. Failure scenario 
i. Component Dysfunction (Classic SDF) arising from FMEA at the system level, and which 

must include failures.  
ii. Out of ODD and out of resilience domain (cf figure in section 4.3.1.1- Qualification 

of Pathway description and ODD )   & PM-782   
iii. Accidentology (or identified near-accidents): derived from past experience feedback (WP7) 

Critical / Failure Scenarios 
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Note: As any requirement or piece of information used in critical system engineering, the scenario 
shall be managed with appropriate lifecycle and configuration management process, relying on 
scenario management tools. 
 
 

PM-1020 - Level 4 qualified functional scenario completeness 
Based on the analysis of the Qualified Pathway and the Qualified OEDR, the PRISSMA method shall 
verify that the STRA supplier's has demonstrated the completeness of coverage of functional 
scenarios versus the pathway and the OEDR. 
Note: The elicitation  of functional scenario should be realized by the certification authority in 
addition to the ARTS supplier in order to do this verification 
 
 

PM-1085 - Logical Scenario Qualification 
The PRISSMA method shall verify that the ARTS supplier logical scenario definition has the following 
properties: 

• compliant with standards or state-of-the art method for elicitation  (PEGASUS or DGITM) 
• include at least the following key-frames:  Initial conditions of the actors at T0 (position, 

speed, state, etc.), Start maneuver  parameters (position, speed, type, maneuver related 
parameters, etc.), End maneuver parameters, Triggering conditions at each keyframe (values 
or parameters) 

• justification of inputs dimensions of the OD discarded as parameters of the logical scenario 
• classification of logical scenario: 

All the logical scenario shall be classified in the different a functional scenarios   
 
 

4.3.2.3 Qualification of the  subsystems 
PM-1076 - Supporting subsystem qualification 
The PRISSMA method shall verify that all the AI component of the ARTS have followed a qualification 
process, comparable with the following one: Specification, Design, Verification & Validation, 
Certification and accreditation, Maintenance and Monitoring 
 
 

4.3.2.4 Qualification of the ARTS in operational environment 
PM-1007 - ARTS operation inservice monitoring 
The PRISSMA method shall verify that the ARTS supplier is able to demonstrate that the High-Risk AI 
functions-of-interest of the ARTS can be oversight by human . The expected demonstration is a risk 
assessment and mitigation with an specification of how the human should interact with the ARTS 
system to mitigate the risk at acceptable level. 
Note: In the french ARTS decree, remote intervention supervision is distinguished. 
The possible actions of a remote operator are defined in the ARTS decree: 
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• To activate, deactivate the system, to give the instruction to perform, modify, interrupt a 
maneuver, or to acknowledge maneuvers proposed by the system 

• To give instruction to the navigation system operating on the system to choose or modify 
the planning of a route or stopping points for users; 

There may be other actions not related to remote intervention but posing a safety issue within the 
framework of supervision. 
 
 

PM-1055 - Operational environment evaluation // qualification by monitoring 
During the open road evaluation, the STRA must be operated with a human in the loop (monitor) for a 
sufficient testing period to allow the STRA supplier to build a driving justification file showing: 

• The statistical distribution VS the evaluation domain (particularly throughout the year, or even over X 
years to take into account the seasons, the weather, the particular traffic conditions) 

• The absence of dangerous situations attributable to the ARTS, as noted by the human operator 
(human operator accredited separately without conflicts of interest with the ARTS supplier) 

Rationale: The human operator = more guarantee of avoiding an accident during the probationary period. 
Note 1: Additional evaluations, provided by a connected infrastructure, will be so much additional credit to 
provide during this justification. 
Note 2: If the human operator is remote, it must also be demonstrated that at no time could their retaking 
control of the vehicle be prevented (hence the certification of the infrastructure and supervision). 
 
 

4.3.3 Miscellaneous properties to verify 
PM-947 - Verification of AI Resilience 
The PRISSMA method shall verify that in case of Out of Distribution Data the ARTS  still has safe 
behavior or trigger minimal risk manoeuver. 
Note: This situation addresses both normal event out of distribution  and rare events out of 
distribution. 
Example: Pedestrian who appears in front of the vehicle outside of a pedestrian crossing. 
 
 

PM-1031 - Explicability 
The PRISSMA method shall verify that the AI component's supplier is providing an explicability 
justification document along with it's AI that enables a human to assert if an output is correct based 
on the knowledge of the inputs of the AI component. 
 
 

PM-995 - AV or ARTS Explicability // Transparency 
The PRISSMA method shall verify that the AI component has explicability ouputs and the AI supplier's 
has provided the documentation enabling third party justification document along with it's AI that 
enables a human to assert if an output is correct based on the knowledge of the inputs of the AI 
component. 
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Example: Detection of dogs or cats, adding pixels to an image to indicate which pixels contributed to 
distinguishing dogs and cats. 
 
 

PM-1032 - Logging system 
The PRISSMA method shall verify that the ARTShas a logging function in compliance with current 
regulations and capable of centralizing logs from system components, including AI components, over a 
sufficient period of time. 
Note: in particular, the ability to vary the recorded parameters and their duration based on the system's 
accident history and maintenance.  
 
 

PM-1034 - ARTS Interpretability 
The PRISSMA method shall verify that the ARTS supplier's has provided the interpretability 
justification documentation that demonstrate the interpretability of the AI ouputs by domains 
experts, including the justification of any function related to the supply of information required for 
the interpretation of the outputs (like logging sytem or additional information about the output) . 
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5 ANNEX 1: AI FUNCTIONAL REQUIREMENTS 
The pure functional requirements of the AI components or specific evaluation techniques are out of 
scope of this document. Rather they are inputs or outputs to an instantiation of the PRISSMA method 
applied to a given ARTS. 
 
However, given the focus of the PRISSMA project on AI, these specific requirements are listed below to guide 
PRISSMA WPs that would use them. 

 
Below is a partial list of the functions to be covered, based on the state-of-the art most important functions 
regarding ARTS [SAAV] 
 

1. The ARTS manage risks according to the following rules 
a. ARTS does not create accident by its own 
b. ARTS is robust, as far as reasonably possible, to risks caused by others 
c. ARTS complies  with  applicable  driving  rules  (including  those applicable to human 

drivers) unless it is the only way to avoid an accident 
2. Driving policy: The vehicles of the ARTS  seeks to maintain safety distance with the preceding 

vehicle and leaves AD mode after 1st significant shock 
3. Understandable: The ARTS operator and the other road users are clearly informed if the 

vehicle is in AD mode, and it's maneuvers are understandable by the vehicle operator and 
the other road users (vulnerable or not) 

4. Transition to/from AD mode: the ARTS has defined rules to enter or leave AD mode. 
5. Takeover procedure: The ARTS operator is able to take over vehicle control at any time 
6. Minimum Risk Maneuver: The vehicles of the ARTS has precisely defined Minimum Risk 

Maneuver that shall be triggered when the ARTS is getting out of its ODD  
7. Logging system: The vehicles and ARTS has logging mechanism to record in operation data 

for post analysis [ PM-832] 

 

When qualifying a perception/decision AI function-of-interest, the PRISSMA method should put a 
particular focus on the following aspects: 
 

1. Validation of static object and dynamic object detection 
2. Construction of the dynamic occupancy of the LIDAR sensors 

 To validate the construction of a dynamic occupancy grid based on Lidar data, it can be compared 
with a ground truth dataset. For example, a vehicle equipped with LIDAR sensors can be driven along 
a route while simultaneously recording the LIDAR data and the ground truth data. 

3. Validation of the relative speed estimation of tracked object. 
4. Quantification and measurement of uncertainty in speed measurements. 
5. Validate and evaluate the time to collision measurement of the vehicles (the time to collision 

must be true in case of collision and the vehicle shall not hit other vehicles if the time to 
collision does not detect potential collision). 
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6. Validation of the clustering and classification for the different perception sensors. 
7. Code quality & safety assessment (memory loss, structure é memory loss overflow, etc...) [

PM-827] 
8. Provide accurate ground truth (have accurate reference as a GPS RTK. Record the proprioceptive 

data  coming from the CAN bus data. This last requirement implies the need of a DBC file in order to 

parse the frame.) [ PM-829] 
9. Separate evaluation of clustering and validation if possible, and global validation of the whole 

classification/clustering[ PM-826, PM-825] 
10. To propose and dispose of tools, materials, and references (test patterns) for the verification of 

sensor models in simulation an in real environment.[ PM-791 & PM-790] 
11. For each exteroceptive sensor: Validate the sensor field of view and sensor performances allowing to 

detect obstacles and hazardous events potentially dangerous for the ego-vehicule. [ PM-789] 
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